Earthquake Characteristics and Earthquake-Explosion Discrimination

1977 ◽  
Author(s):  
Carl Kisslinger ◽  
C. B. Archambeau ◽  
V. F. Cormier ◽  
Gary Lundquist ◽  
J. Stevens
2020 ◽  
Author(s):  
Gabriele Cambiotti ◽  
Karim Douch ◽  
Stefano Cesare ◽  
Alberto Anselmi ◽  
Nico Sneeuw ◽  
...  

<p>We perform Next Gerataion Gravity Mission (NGGM) simulations over a 12-year operational period by including in the background gravity field the time-dependent gravity anomalies caused by different earthquake scenarios and considering different sources of error on 28-day mean gravity field solutions: the instrumental errors of the interferometer and accelerometers, the time depenendent background model and the atmosphere-ocean dealiasing. In order to assess whether the observational errors mask or not the earthquake-induced gravity signals, we assume known the background gravity field and the spatial and temporal pattern of the earthquake-induced gravity anomalies. Then, for each earthquake, we estimate the amplitude of its gravity anomaly by inverting the NGGM synthetic data time series and we check its consistency with the expected amplitude, as well as with the null hypothesis. In order to investigate case studies representative of the main earthquake characteristics and their compliance with the NGGM specifications, we have considered normal, inverse and strike-slip focal mechanisms striking with different angles with respect to the polar orbit, reaching the Earth surface and in depth, occurring inland, off-shore and close to the coastlines and at the beginning (2-4 years), at the middle (5-7 years) and at the end (8-10 years) of the 12-year operational period. The fault dimensions and slip distribution vary with the seismic moment magnitude and are prescribed according to the circular fault model by Eshelby (1957). Furthermore, we also consider two different rheological stratifications with asthenospheric viscosity of 10¹⁸ and 10¹⁹ Pa s. In order to discuss whether the earthquake signal can be discriminated from other geophysical processes (like atmosphere, ocean, hydrology and glacial isostatic adjustment), we also perform the same inversion but, this time, its amplitude is estimated jointly with the time dependent background gravity field, which we simply model using static values, trends and periodical functions.</p>


2001 ◽  
Vol 01 (02) ◽  
pp. 235-246 ◽  
Author(s):  
CHIN-HSIUNG LOH ◽  
SHIUAN WAN ◽  
YI-WEN CHANG

This paper examines the dynamic behavior of a highway RC-bridge subjected to both near-fault and far-field ground motions. The bridge consists of a hinge supported continuous girder with six concrete piers and the bridge is designed according to the Taiwan seismic design code. To investigate the hysteretic behavior of the bridge piers, cyclic loading tests were carried out at the National Center for Research on Earthquake Engineering (NCREE). The Chi-Chi earthquake ground motion record was adopted as the near-fault earthquake characteristics whereas another earthquake record was selected for the far-field earthquake characteristics. The ductility demands and base shear demands due to the near-fault and the far-field earthquake ground motions are compared and conclusions drawn from the study. The stipulation of code limitations and the present calculated demands are discussed.


Kappa Journal ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 31-39
Author(s):  
Sri Rizki Eka Putri ◽  
◽  
Hiden Hiden ◽  
Suhayat Minardi ◽  
◽  
...  

Nusa Tenggara is one of the areas with a high level of seismic activity in Indonesia because this area is located between the Indian Ocean plate, which moves northward and pushes the Eurasian plate. One method that is often used to determine an earthquake's epicentre is the Tensor Moment Inversion method. This study aims to determine the moment tensor magnitude of each earthquake event and determine earthquake characteristics based on the earthquake focus mechanism in Nusa Tenggara from 2018 to 2019. The earthquake with a magnitude of ≥ 5.7 SR and to find out the fault parameters, namely strike, dip, and rake using waveform data. One method that is often used to determine an earthquake's epicentre is the Tensor Moment Inversion method. The results showed that the fault planes formed were reverse faults and oblique faults. It has been calculated the moment tensor for each of the six components, namely Mxx, Myy, Mzz, Mxy, Myz and Mxz. From the results of the focal analysis of the 2018-2019 Nusa Tenggara earthquake mechanism, the values of the fault plane orientation parameters such as strike, dip and rake are obtained. For strikes in Nusa Tenggara on area 1, namely: 73° to 122°, Dip: 20° to 72° and Rake: 53° to 139°. While in field 2 for a strike, it is 232° to 280°, Dip 28° to 75°, Rake: 52° to 102°.


Sign in / Sign up

Export Citation Format

Share Document