EVALUATION OF SEISMIC DEMANDS IN A CONTINUOUS BRIDGE

2001 ◽  
Vol 01 (02) ◽  
pp. 235-246 ◽  
Author(s):  
CHIN-HSIUNG LOH ◽  
SHIUAN WAN ◽  
YI-WEN CHANG

This paper examines the dynamic behavior of a highway RC-bridge subjected to both near-fault and far-field ground motions. The bridge consists of a hinge supported continuous girder with six concrete piers and the bridge is designed according to the Taiwan seismic design code. To investigate the hysteretic behavior of the bridge piers, cyclic loading tests were carried out at the National Center for Research on Earthquake Engineering (NCREE). The Chi-Chi earthquake ground motion record was adopted as the near-fault earthquake characteristics whereas another earthquake record was selected for the far-field earthquake characteristics. The ductility demands and base shear demands due to the near-fault and the far-field earthquake ground motions are compared and conclusions drawn from the study. The stipulation of code limitations and the present calculated demands are discussed.

Author(s):  
Daniel I. Silva ◽  
Cheng Chen

Self-centering systems have attracted significant interest in earthquake-engineering research, due to their excellent performance under simulated seismic loading through their self-centering capabilities. A comprehensive parametric study is presented to compare the ductility demands on single-degree-of-freedom (SDOF) systems, when subjected to ground motions with a probability of exceedance of 10% in 50 years in California. The influences of different parameters were analyzed under SDOF structural responses in terms of displacement ductility and absolute acceleration. The responses of the flag-shaped hysteretic SDOF systems were also compared against the responses of similar bilinear elasto-plastic hysteretic SDOF systems. Two ensembles of far-field and near-fault historical earthquake records, corresponding to ordinary earthquakes, were used for the parametric study to compare the ductility demands. Although a flag-shaped hysteretic SDOF system of equal or lesser strength can often match or better the response of an elasto-plastic hysteretic SDOF system with almost no residual drift, the analysis shows that seismic design of self-centering systems should account for the difference between far-field and near-fault ground motion.


2011 ◽  
Vol 90-93 ◽  
pp. 2633-2639
Author(s):  
Chang Hao Zhang ◽  
Wei Wang ◽  
Hu Wang ◽  
Xun Tao Wang

This paper examined the engineering characteristics of the near-fault ground motion. The four-story reinforced concrete frame was designed under Code for seismic design of building (GB50011-2010).The SAP2000 software was applied to model it, and the nonlinear time history analyses of structure were implemented. Near-fault ground motions with forward directivity and fling-step and far field ground motions were selected as seismic inputs.The results show that in terms of some structural dynamic response parameters, such as the vertex displacement, between the corner of the layer displacement, and the base shear et al., the structural responses to the ground motion with near-fault are increased by considerable magnitudes when the seismic responses of structures step into the elastic-plastic stage, compared with far-field ground motion, and the influence of damaging the mid-lower structure is significantly greater.


2020 ◽  
Vol 24 (1) ◽  
pp. 119-133
Author(s):  
Huihui Dong ◽  
Qiang Han ◽  
Xiuli Du ◽  
Canxing Qiu

Many studies on the strength reduction factor mainly focused on structures with the conventional hysteretic models. However, for the self-centering structure with the typical flag-shaped hysteretic behavior, the corresponding study is limited. The main purpose of this study is to investigate the strength reduction factor of the self-centering structure with flag-shaped hysteretic behavior subjected to near-fault pulse-like ground motions by the time history analysis. For this purpose, the smooth flag-shaped model based on Bouc-Wen model which can show flag-shaped hysteretic behavior is first described. The strength reduction factor spectra of the flag-shaped model are then calculated under 85 near-fault pulse-like ground motions. The influences of the ductility level, vibration period, site condition, hysteretic parameter, and hysteretic model are investigated statistically. For comparison, the strength reduction factors under ordinary ground motions are also analyzed. The results show that the strength reduction factor from near-fault pulse-like ground motions is smaller. Finally, a predictive model is proposed to estimate the strength reduction factor for the self-centering structure with the flag-shaped model under near-fault pulse-like ground motions.


2020 ◽  
Vol 36 (3) ◽  
pp. 1485-1516
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  

A shaking table test of a three-story reinforced concrete (RC) building was conducted. The tested building is vertically irregular because of the first story’s elevated height and the third story’s added RC walls. In addition to far-field ground motions, near-fault ground motions were exerted on this building. A numerical model of the three-story building was constructed. Comparing with the test results indicates that the numerical model is satisfactory for simulating the seismic response of the three-story building. This validated numerical model was then further applied to look into two issues: the effective section rigidities of RC members and the effects of near-fault ground motions. The study results show the magnitude of the possible discrepancy between the actual seismic response and the estimated seismic response, when the effective section rigidities of the RC members are treated as in common practice. An incremental dynamic analysis of the three-story RC building subjected to one far-field and one near-fault ground motion, denoted as CHY047 and TCU052, respectively, was conducted. In comparison with the far-field ground motion, the near-fault ground motion is more destructive to this building. In addition, the effect of the selected near-fault ground motion (i.e. TCU052) on the building’s collapse is clearly identified.


2018 ◽  
Vol 15 (1) ◽  
pp. 1-14
Author(s):  
Ahad Javanmardi ◽  
Zainab Ibrahim ◽  
Khaled Gheadi ◽  
Mohammed Jameel ◽  
Usman Hanif ◽  
...  

Nowadays, development of cable-stayed bridges is increasing around the world. The mitigation of seismic forces to these bridges are obligatory to prevent damages or failure of its structural members. Herein, this paper aimed to determine the near-fault ground motion effect on an existing cablestayed bridge equipped with lead-rubber bearing. In this context, Shipshaw cable-stayed bridge is selected as the case study. The selected bridge has a span of 183.2 m composite deck and 43 m height of steel tower. 2D finite element models of the non-isolated and base isolated bridges are modelled by using SAP2000. Three different near-fault ground motions which are Tabas 1978, Cape Mendocino 1992 and Kobe 1995 were subjected to the 2D FEM models in order to determine the seismic behaviour of the bridge. The near-fault ground motions were applied to the bridge in the longitudinal direction. Nonlinear dynamic analysis was performed to determine the dynamic responses of the bridge. Comparison of dynamic response of nonisolated and base isolated bridge under three different near-fault ground motions were conducted. The results obtained from numerical analyses of the bridge showed that the isolation system lengthened the period of bridge and minimised deck displacement, base shear and base moment of the bridge. It is concluded that the isolation system significantly reduced the destructive effects of near-fault ground motions on the bridge.


2001 ◽  
Vol 17 (2) ◽  
pp. 221-234 ◽  
Author(s):  
Anil K. Chopra ◽  
Chatpan Chintanapakdee

A new measure of earthquake demand, the drift spectrum has been developed as an adjunct to the response spectrum, a central concept in earthquake engineering, in calculating the internal deformations of a structure due to near-fault ground motions with pronounced coherent pulses in the velocity and displacement histories. Compared in this paper are certain aspects of the elastic structural response to near-fault and far-fault ground motions. It is demonstrated that (1) the difference between drift and response spectra are not unique to near-fault ground motions; these differences simply reflect higher-mode response, which is larger due to near-fault ground motions; (2) response spectrum analysis (RSA) using existing modal combination rules can provide an estimate of structural response that is accurate to a useful degree; (3) these modal combination rules are similarly accurate for near-fault and far-fault ground motions although the underlying assumptions are not satisfied by near-fault excitations; and (4) RSA is preferable over the drift spectrum in computing structural response because it represents standard engineering practice and is applicable to a wide variety of structures.


2005 ◽  
Vol 21 (4) ◽  
pp. 1113-1135 ◽  
Author(s):  
Susendar Muthukumar ◽  
Reginald DesRoches

This study examines the effect of column hysteretic behavior on the impact response of adjacent frames in multiple-frame bridges. A simplified planar analytical bridge model is developed including inelastic frame action, nonlinear hinge behavior, and abutment effects. Pounding is simulated using a stereomechanical approach. The frame hysteretic models considered include the elasto-plastic and bilinear (traditional), Q-Hyst (stiffness-degrading), and pivot hysteresis (strength-degrading) models. Analytical studies conducted on adjacent bridge frames reveal that the traditional models underestimate the stiff frame displacement amplification due to pounding, and overestimate the flexible frame displacement amplification, when compared with other hysteretic models. A stiffness-degrading model is recommended to accurately estimate the pounding response of bridge frames subjected to far-field ground motion. The use of a strength-degrading model increases the stiff frame displacement amplification by 125% when compared to the stiffness-degrading model for highly out-of-phase frames, and is recommended in the presence of near-field ground motions.


Sign in / Sign up

Export Citation Format

Share Document