Time Series Long Memory Identification and Quantile Spectral Analysis.

1983 ◽  
Author(s):  
Emanuel Parzen
1986 ◽  
Vol 23 (A) ◽  
pp. 41-54 ◽  
Author(s):  
Emanuel Parzen

An approach to time series model identification is described which involves the simultaneous use of frequency, time and quantile domain algorithms; the approach is called quantile spectral analysis. It proposes a framework to integrate the analysis of long-memory (non-stationary) time series with the analysis of short-memory (stationary) time series.


1986 ◽  
Vol 23 (A) ◽  
pp. 41-54 ◽  
Author(s):  
Emanuel Parzen

An approach to time series model identification is described which involves the simultaneous use of frequency, time and quantile domain algorithms; the approach is called quantile spectral analysis. It proposes a framework to integrate the analysis of long-memory (non-stationary) time series with the analysis of short-memory (stationary) time series.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


Author(s):  
Jan Beran ◽  
Britta Steffens ◽  
Sucharita Ghosh

AbstractWe consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.


2021 ◽  
Author(s):  
Zeda Li ◽  
Scott A. Bruce ◽  
Clinton J. Wutzke ◽  
Yang Long

Sign in / Sign up

Export Citation Format

Share Document