The Direct Correlation function of a Mixture of Hard Ions in the Mean Spherical Approximation

1991 ◽  
Author(s):  
L. Blum ◽  
Yaakov Rosenfeld
1999 ◽  
Vol 77 (8) ◽  
pp. 585-590 ◽  
Author(s):  
M Moradi ◽  
M Kavosh Tehrani

The solvation force in a hard-sphere fluid is obtained by the denisty functional theory proposed by Rickayzen and Augousti. The direct correlation function (DCF) with the tail introduced by Tang and Lu is used. This DCF (hereafter TL DCF ) is postulated to hold the Yukawa form outside the hard core; and the generalized mean spherical approximation (GMSA) approach has been applied. The results are compared with those obtained by using the Percus-Yevick (PY) DCF. These results are also compared with those of Monte Carlo simulations. At low densities and fairly high densities the results are in agreement. But at high densities there is more oscillation in the solvation force obtained by using TL DCF in comparison with the PY DCF. There are no simulation results at high densities to be compared with these results.PACS No. 61.20


2008 ◽  
Vol 73 (3) ◽  
pp. 424-438 ◽  
Author(s):  
Douglas J. Henderson ◽  
Osvaldo H. Scalise

The mean spherical approximation (MSA) is of interest because it produces an integral equation that yields useful analytical results for a number of fluids. One such case is the Yukawa fluid, which is a reasonable model for a simple fluid. The original MSA solution for this fluid, due to Waisman, is analytic but not explicit. Ginoza has simplified this solution. However, Ginoza's result is not quite explicit. Some years ago, Henderson, Blum, and Noworyta obtained explicit results for the thermodynamic functions of a single-component Yukawa fluid that have proven useful. They expanded Ginoza's result in an inverse-temperature expansion. Even when this expansion is truncated at fifth, or even lower, order, this expansion is nearly as accurate as the full solution and provides insight into the form of the higher-order coefficients in this expansion. In this paper Ginoza's implicit result for the case of a rather special mixture of Yukawa fluids is considered. Explicit results are obtained, again using an inverse-temperature expansion. Numerical results are given for the coefficients in this expansion. Some thoughts concerning the generalization of these results to a general mixture of Yukawa fluids are presented.


1996 ◽  
Vol 104 (16) ◽  
pp. 6327-6329 ◽  
Author(s):  
J. H. Herrera ◽  
H. Ruiz‐Estrada ◽  
L. Blum

Sign in / Sign up

Export Citation Format

Share Document