Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development

1991 ◽  
Author(s):  
Martin J. Blaser
mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Henju Marjuki ◽  
Nadav Topaz ◽  
Sandeep J. Joseph ◽  
Kim M. Gernert ◽  
Ellen N. Kersh ◽  
...  

ABSTRACT The human pathogens Neisseria gonorrhoeae and Neisseria meningitidis share high genome identity. Retrospective analysis of surveillance data from New Zealand indicates the potential cross-protective effect of outer membrane vesicle (OMV) meningococcal serogroup B vaccine (MeNZB) against N. gonorrhoeae. A licensed OMV-based MenB vaccine, MenB-4C, consists of a recombinant FHbp, NhbA, NadA, and the MeNZB OMV. Previous work has identified several abundantly expressed outer membrane proteins (OMPs) as major components of the MenB-4C OMV with high sequence similarity between N. gonorrhoeae and N. meningitidis, suggesting a mechanism for cross-protection. To build off these findings, we performed comparative genomic analysis on 970 recent N. gonorrhoeae isolates collected through a U.S surveillance system against N. meningitidis serogroup B (NmB) reference sequences. We identified 1,525 proteins that were common to both Neisseria species, of which 57 proteins were predicted to be OMPs using in silico methods. Among the MenB-4C antigens, NhbA showed moderate sequence identity (73%) to the respective gonococcal homolog, was highly conserved within N. gonorrhoeae, and was predicted to be surface expressed. In contrast, the gonococcal FHbp was predicted not to be surface expressed, while NadA was absent in all N. gonorrhoeae isolates. Our work confirmed recent observations (E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, Clin Infect Dis, 2018, https://doi.org/10.1093/cid/ciy1061) and describes homologous OMPs from a large panel of epidemiologically relevant N. gonorrhoeae strains in the United States against NmB reference strains. Based on our results, we report a set of OMPs that may contribute to the previously observed cross-protection and provide potential antigen targets to guide the next steps in gonorrhea vaccine development. IMPORTANCE Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis, 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development.


1999 ◽  
Vol 38 (4) ◽  
pp. 244-249 ◽  
Author(s):  
Jiangtao Zhu ◽  
Richard J. Meinersmann ◽  
Kelli L. Hiett ◽  
Donald L. Evans

1989 ◽  
Vol 27 (5) ◽  
pp. 1072-1076 ◽  
Author(s):  
I Derclaye ◽  
I Delor ◽  
M Van Bouchaute ◽  
P Moureau ◽  
G Wauters ◽  
...  

2014 ◽  
Vol 4 ◽  
pp. 184-194 ◽  
Author(s):  
Eleanor Watson ◽  
Aileen Sherry ◽  
Neil F. Inglis ◽  
Alex Lainson ◽  
Dushyanth Jyothi ◽  
...  

2011 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Timiri V. Meenambigai ◽  
Gopalakrishnan Ravikumar ◽  
Andy Srithar ◽  
Govindan Balakrishnan ◽  
Chidambaram Saranya ◽  
...  

<p>Leptospirosis is a worldwide zoonotic disease of cattle associated with pathogenic leptospiral infection. This study focuses in the use of a molecular tool to detect pathogenic leptospiral infection in bovines by targeting the outer membrane proteins LipL32 and LipL21 simultaneously in a multiplex PCR. Sixteen pathogenic reference strains and 10 bovine serum samples were analyzed for simultaneous detection of both genes at appropriate annealing conditions. These findings are suggestive of the fact that multiplex PCR can be used to detect major outer membrane proteins of pathogenic leptospira from serum samples. Further it aided in the differentiation of pathogenic and non-pathogenic species of leptospires too. This study will definitely serve as a valuable tool, as it suggests the importance of <em>LipL32</em> genes as potential candidates for vaccine development to control animal Leptospirosis.</p>


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
M. John Albert ◽  
Abu Salim Mustafa ◽  
Anjum Islam ◽  
Shilpa Haridas

ABSTRACTImmunity toCampylobacter jejuni, a major diarrheal pathogen, is largely Penner serotype specific. For broad protection, a vaccine should be based on a common antigen(s) present in all strains. In our previous study (M. J. Albert, S. Haridas, D. Steer, G. S. Dhaunsi, A. I. Smith, and B. Adler, Infect. Immun. 75:3070–3073, 2007), we demonstrated that antibody to cholera toxin (CT) cross-reacted with the major outer membrane proteins (MOMPs) of allCampylobacter jejunistrains tested. In the current study, we investigated whether immunization with CT protects against intestinal colonization byC. jejuniin an adult mouse model and whether the nontoxic subunit of CT (CT-B) is the portion mediating cross-reaction. Mice were orally immunized with CT and later challenged withC. jejunistrains (48, 75, and 111) of different serotypes. Control animals were immunized with phosphate-buffered saline. Fecal shedding of challenge organisms was studied daily for 9 days. Serum and fecal antibody responses were studied by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The cross-reactivity of rabbit CT-B antibody to MOMP was studied by immunoblotting. The reactivity of 21 overlapping 30-mer oligopeptides (based on MOMP’s sequence) against rabbit CT antibody was tested by ELISA. Test animals produced antibodies to CT and MMP in serum and feces and showed resistance to colonization, the vaccine efficacies being 49% (for strain 48), 37% (for strain 75), and 34% (for strain 111) (P, ≤0.05 to ≤0.001). One peptide corresponding to a variable region of MOMP showed significant reactivity. CT-B antibody cross-reacted with MOMP. Since CT-B is a component of oral cholera vaccines, it might be possible to controlC. jejunidiarrhea with these vaccines.IMPORTANCECampylobacter jejuniis a major cause of diarrhea worldwide. Patients who recover fromC. jejunidiarrhea develop immunity to the infecting serotype and remain susceptible to infection with other serotypes. A vaccine based on a common protective antigen(s) present in allC. jejuniserotypes is expected to provide broad protection. In our previous study, we showed that antibody to cholera toxin (CT) reacted with the major outer membrane proteins (MOMPs) from different strains ofC. jejuni. We assumed that the B subunit of the toxin (CT-B), which is nontoxic and a component of licensed oral cholera vaccines, might be the component that cross-reacts with MOMP. In the current study, we showed that orally immunizing mice with CT protected them against colonization upon challenge with different serotypes ofC. jejuni. We also showed that CT-B is the component mediating cross-reaction. Therefore, it might be possible to use cholera vaccines to preventC. jejunidiarrhea. This could result in significant savings in vaccine development and treatment of the disease.


2005 ◽  
Vol 73 (12) ◽  
pp. 8109-8118 ◽  
Author(s):  
Job E. Lopez ◽  
William F. Siems ◽  
Guy H. Palmer ◽  
Kelly A. Brayton ◽  
Travis C. McGuire ◽  
...  

ABSTRACT Immunization with purified Anaplasma marginale outer membranes induces complete protection against infection that is associated with CD4+ T-lymphocyte-mediated gamma interferon secretion and immunoglobulin G2 (IgG2) antibody titers. However, knowledge of the composition of the outer membrane immunogen is limited. Recent sequencing and annotation of the A. marginale genome predicts at least 62 outer membrane proteins (OMP), enabling a proteomic and genomic approach for identification of novel OMP by use of IgG serum antibody from outer membrane vaccinates. Outer membrane proteins were separated by two-dimensional electrophoresis, and proteins recognized by total IgG and IgG2 in immune sera of outer membrane-vaccinated cattle were detected by immunoblotting. Immunoreactive protein spots were excised and subjected to liquid chromatography-tandem mass spectrometry. A database search of the A. marginale genome identified 24 antigenic proteins that were predicted to be outer membrane, inner membrane, or membrane-associated proteins. These included the previously characterized surface-exposed outer membrane proteins MSP2, operon associated gene 2 (OpAG2), MSP3, and MSP5 as well as recently identified appendage-associated proteins. Among the 21 newly described antigenic proteins, 14 are annotated in the A. marginale genome and include type IV secretion system proteins, elongation factor Tu, and members of the MSP2 superfamily. The identification of these novel antigenic proteins markedly expands current understanding of the composition of the protective immunogen and provides new candidates for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document