New Methods for Nonlinear Tracking and Nonlinear Chaotic Signal Processing

1992 ◽  
Author(s):  
Jon A. Wright
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 450 ◽  
Author(s):  
Denis Butusov ◽  
Timur Karimov ◽  
Alexander Voznesenskiy ◽  
Dmitry Kaplun ◽  
Valery Andreev ◽  
...  

The vulnerability of chaotic communication systems to noise in transmission channel is a serious obstacle for practical applications. Traditional signal processing techniques provide only limited possibilities for efficient filtering broadband chaotic signals. In this paper, we provide a comparative study of several denoising and filtering approaches: a recursive IIR filter, a median filter, a wavelet-based denoising method, a method based on empirical modes decomposition, and, finally, propose the new filtering algorithm based on the cascade of driven chaotic oscillators. Experimental results show that all the considered methods make it possible to increase the permissible signal-to-noise ratio to provide the possibility of message recognition, while the new proposed method showed the best performance and reliability.


Author(s):  
Berenice Verdin ◽  
Chandra Pappu ◽  
Benjamin C. Flores

2017 ◽  
Vol 10 (12) ◽  
pp. 5063-5073 ◽  
Author(s):  
Jesse L. Ambrose

Abstract. Atmospheric Hg measurements are commonly carried out using Tekran® Instruments Corporation's model 2537 Hg vapor analyzers, which employ gold amalgamation preconcentration sampling and detection by thermal desorption (TD) and atomic fluorescence spectrometry (AFS). A generally overlooked and poorly characterized source of analytical uncertainty in those measurements is the method by which the raw Hg atomic fluorescence (AF) signal is processed. Here I describe new software-based methods for processing the raw signal from the Tekran® 2537 instruments, and I evaluate the performances of those methods together with the standard Tekran® internal signal processing method. For test datasets from two Tekran® instruments (one 2537A and one 2537B), I estimate that signal processing uncertainties in Hg loadings determined with the Tekran® method are within ±[1 % +  1.2 pg] and ±[6 % + 0.21 pg], respectively. I demonstrate that the Tekran® method can produce significant low biases (≥  5 %) not only at low Hg sample loadings (<  5 pg) but also at tropospheric background concentrations of gaseous elemental mercury (GEM) and total mercury (THg) (∼  1 to 2 ng m−3) under typical operating conditions (sample loadings of 5–10 pg). Signal processing uncertainties associated with the Tekran® method can therefore represent a significant unaccounted for addition to the overall  ∼  10 to 15 % uncertainty previously estimated for Tekran®-based GEM and THg measurements. Signal processing bias can also add significantly to uncertainties in Tekran®-based gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurements, which often derive from Hg sample loadings < 5 pg. In comparison, estimated signal processing uncertainties associated with the new methods described herein are low, ranging from within ±0.053 pg, when the Hg thermal desorption peaks are defined manually, to within ±[2 % + 0.080 pg] when peak definition is automated. Mercury limits of detection (LODs) decrease by 31 to 88 % when the new methods are used in place of the Tekran® method. I recommend that signal processing uncertainties be quantified in future applications of the Tekran® 2537 instruments.


Author(s):  
Annamária R. Várkonyi-Kóczy ◽  
◽  

The never unseen information explosion in data transmission and communication called for new methods in signal coding and reconstruction. To minimize the channel capacity needed for the transmission urged researchers to find techniques which are flexible and can adapt to the available space and time. Anytime techniques are good candidates for such purposes. If the signal/data to be transmitted can be characterized as sequence of stationary intervals overcomplete signal representations can be applied. These techniques can be operated in an anytime manner as well, i.e., are excellent tools for handling the capacity problems. This paper introduces the concept of anytime recursive overcomplete signal representations using different recursive signal processing algorithms. The novelty of the approach is that an on-going set of signal transformations together with appropriate (e.g., L1 norm) minimization procedures can provide optimal and flexible anytime on-going representations, on-going signal segmentations into stationary intervals, and on-going feature extractions for immediate utilization in data transmission, communication, diagnostics, or other applications. The proposed technique may be advantageous if the transmission channel is overloaded and in case of processing non-stationary signals when complete signal representations can be used only with serious limitations because of their relative weakness in adaptive matching of signal structures.


Sign in / Sign up

Export Citation Format

Share Document