Representation and Recognition with Invariants and Geometric Constraint Models

1992 ◽  
Author(s):  
GENERAL ELECTRIC CO SCHENECTADY NY
Keyword(s):  
Author(s):  
Duanling Li ◽  
Pu Jia ◽  
Jiazhou Li ◽  
Dan Zhang ◽  
Xianwen Kong

Abstract The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints. Compared with the method of changing the mobility by physical locking joints, the geometric constraint has good controllability, and the constructed parallel mechanism has more configurations and wider application range. This paper presents a reconfigurable axis (rA) joint inspired and evolved from Rubik's Cubes, which have a unique feature of geometric and physical constraint of axes of joint. The effectiveness of the rA joint in the construction of the limb is analyzed, resulting in a change in mobility and topology of the parallel mechanism. The rA joint makes the angle among the three axes inside the groove changed arbitrarily. This change in mobility is completed by the case illustrated by a 3(rA)P(rA) reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations, pure rotations. The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors, leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint. The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases. The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.


2015 ◽  
Vol 13 (3) ◽  
pp. 271-280 ◽  
Author(s):  
Adel Moussaoui ◽  
Samy Ait-Aoudia
Keyword(s):  

Author(s):  
Wenxin Wu ◽  
Liang Guo ◽  
Hongli Gao ◽  
Zhichao You ◽  
Yuekai Liu ◽  
...  

2016 ◽  
Vol 70 ◽  
pp. 182-192 ◽  
Author(s):  
Hichem Barki ◽  
Lincong Fang ◽  
Dominique Michelucci ◽  
Sebti Foufou

Author(s):  
Jiabo Zhang ◽  
Xibin Wang ◽  
Ke Wen ◽  
Yinghao Zhou ◽  
Yi Yue ◽  
...  

Purpose The purpose of this study is the presentation and research of a simple and rapid calibration methodology for industrial robot. Extensive research efforts were devoted to meet the requirements of online compensation, closed-loop feedback control and high-precision machining during the flexible machining process of robot for large-scale cabin. Design/methodology/approach A simple and rapid method to design and construct the transformation relation between the base coordinate system of robot and the measurement coordinate system was proposed based on geometric constraint. By establishing the Denavit–Hartenberg model for robot calibration, a method of two-step error for kinematic parameters calibration was put forward, which aided in achievement of step-by-step calibration of angle and distance errors. Furthermore, KUKA robot was considered as the research object, and related experiments were performed based on laser tracker. Findings The experimental results demonstrated that the accuracy of the coordinate transformation could reach 0.128 mm, which meets the transformation requirements. Compared to other methods used in this study, the calibration method of two-step error could significantly improve the positioning accuracy of robot up to 0.271 mm. Originality/value The methodology based on geometric constraint and two-step error is simple and can rapidly calibrate the kinematic parameters of robot. It also leads to the improvement in the positioning accuracy of robot.


Sign in / Sign up

Export Citation Format

Share Document