scholarly journals Constraint and Mobility Change Analysis of Rubik’s Cube-inspired Reconfigurable Joints and Corresponding Parallel Mechanisms

Author(s):  
Duanling Li ◽  
Pu Jia ◽  
Jiazhou Li ◽  
Dan Zhang ◽  
Xianwen Kong

Abstract The current research of reconfigurable parallel mechanism mainly focuses on the construction of reconfigurable joints. Compared with the method of changing the mobility by physical locking joints, the geometric constraint has good controllability, and the constructed parallel mechanism has more configurations and wider application range. This paper presents a reconfigurable axis (rA) joint inspired and evolved from Rubik's Cubes, which have a unique feature of geometric and physical constraint of axes of joint. The effectiveness of the rA joint in the construction of the limb is analyzed, resulting in a change in mobility and topology of the parallel mechanism. The rA joint makes the angle among the three axes inside the groove changed arbitrarily. This change in mobility is completed by the case illustrated by a 3(rA)P(rA) reconfigurable parallel mechanism having variable mobility from 1 to 6 and having various special configurations including pure translations, pure rotations. The underlying principle of the metamorphosis of this rA joint is shown by investigating the dependence of the corresponding screw system comprising of line vectors, leading to evolution of the rA joint from two types of spherical joints to three types of variable Hooke joints and one revolute joint. The reconfigurable parallel mechanism alters its topology by rotating or locking the axis of rA joint to turn all limbs into different phases. The prototype of reconfigurable parallel mechanism is manufactured and all configurations are enumerated to verify the validity of the theoretical method by physical experiments.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Ketao Zhang ◽  
Jian S. Dai ◽  
Yuefa Fang

This paper presents a unique feature of geometric constraint of adjacent axes of the variable-axis (vA) joint and analyses the effectiveness in the constructed limb, resulting in variation of mobility configuration of two 3SvPSv metamorphic parallel mechanisms. The underlying principle of the metamorphosis of this vA joint is unravelled by investigating the dependence of the corresponding screw system comprising of line vectors, leading to evolution of the vA joint from the source phase Sv to the variable Hooke’s joint phase Uv and the variable revolute-joint phase Rv. The kinematic chain installed with the vA joint forms a reconfigurable limb and is then used to construct two 3SvPSv metamorphic parallel mechanisms proposed in this paper. The phase change of the vA joints incurs the constraint change of the SvPSv limb and subsequently results in the change of mobility configuration of the metamorphic parallel mechanisms. The paper further addresses the geometrical condition for constructing 3SvPSv metamorphic parallel mechanisms following the constraints delivered by the reconfigurable limbs, leading to the analysis of mobility change of the mechanisms induced by the phase change of the limbs.


2011 ◽  
Vol 201-203 ◽  
pp. 1907-1912
Author(s):  
Rong Jiang Cui ◽  
Zong He Guo ◽  
Zi Xun Yin ◽  
Song Song Zhu

First, the branched-chain of parallel mechanism was Classified according to reciprocal screw theory. Then, the introduction of variable topology mechanism theory, with the characteristics of parallel mechanisms themselves, the definition and basic variable topology means of variable topology parallel mechanism were given. With evolutionary theory, the method to design lower-mobility parallel mechanisms of non-asymmetric was proposed based on variable topology mechanism theory .Taking 3-RPS as ideal mechanism and topology synthesis was carried out, besides 2-RPS mechanism were analyzed. The introduction of variable topology mechanism theory provided a theoretical basis and innovative approaches for the synthesis configuration of Lower-mobility parallel mechanisms of non-asymmetric.


2021 ◽  
Vol 11 (21) ◽  
pp. 9831
Author(s):  
Zhumadil Baigunchekov ◽  
Med Amine Laribi ◽  
Giuseppe Carbone ◽  
Azamat Mustafa ◽  
Bekzat Amanov ◽  
...  

This paper addresses the structural-parametric synthesis and kinematic analysis of the RoboMech class of parallel mechanisms (PM) having two sliders. The proposed methods allow the synthesis of a PM with its structure and geometric parameters of the links to obtain the given laws of motions of the input and output links (sliders). The paper outlines a possible application of the proposed approach to design a PM for a cold stamping technological line. The proposed PM is formed by connecting two sliders (input and output objects) using one passive and one negative closing kinematic chain (CKC). The passive CKC does not impose a geometric constraint on the movements of the sliders and the geometric parameters of its links are varied to satisfy the geometric constraint of the negative CKC. The negative CKC imposes one geometric constraint on the movements of the sliders and its geometric parameters are determined on the basis of the Chebyshev and least-square approximations. Problems of positions and analogues of velocities and accelerations of the considered PM are solved to demonstrate the feasibility and effectiveness of the proposed formulations and case of study.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haitao Liu ◽  
Ke Xu ◽  
Huiping Shen ◽  
Xianlei Shan ◽  
Tingli Yang

Abstract Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms. Therefore, the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest. Based on this purpose, this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism. With the aid of the theory of mechanism topology, the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented, which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism. Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed, resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree. One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics. The process of type synthesis is in the order of permutation and combination; therefore, there are no omissions. This method is also applicable to other configurations, and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Fu-Qun Zhao ◽  
Sheng Guo ◽  
Hai-Jun Su ◽  
Hai-Bo Qu ◽  
Ya-Qiong Chen

Abstract As the structures of multiarm robots are serially arranged, the packaging and transportation of these robots are often inconvenient. The ability of these robots to operate objects must also be improved. Addressing this issue, this paper presents a type of multiarm robot that can be adequately folded into a designed area. The robot can achieve different operation modes by combining different arms and objects. First, deployable kinematic chains (DKCs) are designed, which can be folded into a designated area and be used as an arm structure in the multiarm robot mechanism. The strategy of a platform for storing DKCs is proposed. Based on the restrictions in the storage area and the characteristics of parallel mechanisms, a class of DKCs, called base assembly library, is obtained. Subsequently, an assembly method for the synthesis of the multiarm robot mechanism is proposed, which can be formed by the connection of a multiarm robot mechanism with an operation object based on a parallel mechanism structure. The formed parallel mechanism can achieve a reconfigurable characteristic when different DKCs connect to the operation object. Using this method, two types of multiarm robot mechanisms with four DKCs that can switch operation modes to perform different tasks through autonomous combination and release operation is proposed. The obtained mechanisms have observable advantages when compared with the traditional mechanisms, including optimizing the occupied volume during transportation and using parallel mechanism theory to analyze the switching of operation modes.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Author(s):  
Yu Zou ◽  
Yuru Zhang

The maximum wrench capabilities of the cable-driven parallel mechanisms are investigated in this paper. Focusing on accuracy and efficiency, two methods, an optimization-based method and a hybrid method based on optimization and geometry, are presented for determining the wrench capability of the cable-driven parallel mechanisms. Both methods are applied to a 6-DOF cable-driven parallel mechanism with eight cables to compute the maximum isotropic force and maximum isotropic moment. Comparison of the two methods is made. The results show that the hybrid method proposed is more accurate and computationally efficient.


2010 ◽  
Vol 4 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Hiroshi Yachi ◽  
◽  
Hiroshi Tachiya

This paper proposes a calibration method for parallel mechanisms usingResponse Surface Methodology. This method is a statistical approach to estimating an unknown input-output relationship using a small set of efficient data collected on an intended system. Although identifying locations causing positional errors in a parallel mechanism and precisely measuring the position and posture of the output point are difficult, the proposed calibration method based onResponse Surface Methodologyaims to compensate for positional and postural errors, without indentifying the locations causing these errors, by using a small yet efficient measurement data set. This study analyzes the effectiveness of the method we propose by applying it to a Stewart platform, which is a typical spatial 6-DOF parallel mechanism.


2021 ◽  
Vol 11 (19) ◽  
pp. 9002
Author(s):  
Qiang Yang ◽  
Hongkun Ma ◽  
Jiaocheng Ma ◽  
Zhili Sun ◽  
Cuiling Li

Kinematic accuracy is a crucial indicator for evaluating the performance of mechanisms. Low-mobility parallel mechanisms are examples of parallel robots that have been successfully employed in many industrial fields. Previous studies analyzing the kinematic accuracy analysis of parallel mechanisms typically ignore the randomness of each component of input error, leading to imprecise conclusions. In this paper, we use homogeneous transforms to develop the inverse kinematics models of an improved Delta parallel mechanism. Based on the inverse kinematics and the first-order Taylor approximation, a model is presented considering errors from the kinematic parameters describing the mechanism’s geometry, clearance errors associated with revolute joints and driving errors associated with actuators. The response surface method is employed to build an explicit limit state function for describing position errors of the end-effector in the combined direction. As a result, a mathematical model of kinematic reliability of the improved Delta mechanism is derived considering the randomness of every input error component. And then, reliability sensitivity of the improved Delta parallel mechanism is analyzed, and the influences of the randomness of each input error component on the kinematic reliability of the mechanism are quantitatively calculated. The kinematic reliability and proposed sensitivity analysis provide a theoretical reference for the synthesis and optimum design of parallel mechanisms for kinematic accuracy.


2020 ◽  
Author(s):  
Jianzhong Ding ◽  
Xueao Liu ◽  
chunjie wang

Abstract A novel method for repeatability analysis of overconstrained kinematic coupling using a parallel-mechanism-equivalent-model is proposed. An overconstrained Kelvin-type coupling with one additional support is introduced and used for method illustration. Contact forces of the overconstrained coupling under preload are computed with Moore-Penrose inverse and the deformations are obtained using the Hertz theory. The couping is equivalently modeled as a 7-SPS parallel mechanism, spherical joints of which represent the centers of the supporting balls and the contact points, respectively, and prismatic joints are used to simulate the deformations. Therefore, pose error of the coupling arisen from preload is analyzed using the well-appraised incremental method for forward kinematics analysis of parallel mechanisms. The uncertainties of the preload are discussed and a boundary-sampling method is proposed for repeatability analysis. The main contribution of this study lies in that the proposed parallel-mechanism-equivalent-model and the boundary-sampling method greatly simplify the repeatability analysis of overconstrained kinematic couplings. Finally, the proposed methods are validated by case study.


Sign in / Sign up

Export Citation Format

Share Document