A simple and rapid calibration methodology for industrial robot based on geometric constraint and two-step error

Author(s):  
Jiabo Zhang ◽  
Xibin Wang ◽  
Ke Wen ◽  
Yinghao Zhou ◽  
Yi Yue ◽  
...  

Purpose The purpose of this study is the presentation and research of a simple and rapid calibration methodology for industrial robot. Extensive research efforts were devoted to meet the requirements of online compensation, closed-loop feedback control and high-precision machining during the flexible machining process of robot for large-scale cabin. Design/methodology/approach A simple and rapid method to design and construct the transformation relation between the base coordinate system of robot and the measurement coordinate system was proposed based on geometric constraint. By establishing the Denavit–Hartenberg model for robot calibration, a method of two-step error for kinematic parameters calibration was put forward, which aided in achievement of step-by-step calibration of angle and distance errors. Furthermore, KUKA robot was considered as the research object, and related experiments were performed based on laser tracker. Findings The experimental results demonstrated that the accuracy of the coordinate transformation could reach 0.128 mm, which meets the transformation requirements. Compared to other methods used in this study, the calibration method of two-step error could significantly improve the positioning accuracy of robot up to 0.271 mm. Originality/value The methodology based on geometric constraint and two-step error is simple and can rapidly calibrate the kinematic parameters of robot. It also leads to the improvement in the positioning accuracy of robot.

Author(s):  
Joanne Pransky

Purpose The purpose of this paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach The interviewee is Dr Cory Kidd, an inventor, entrepreneur and leading practitioner in the field of human–robot interaction. Dr Kidd shares his 20-year journey of working at the intersection of healthcare and technology and how he applied innovative technologies toward solving large-scale consumer healthcare challenges. Findings Dr Kidd received his BS degree in Computer Science from the Georgia Institute of Technology and earned a National Science Foundation Graduate Research Fellow in Computer and Information Science & Engineering. Dr Kidd received his MS and PhD degrees at the MIT Media Lab in human–robot interaction. While there, he conducted studies that showed the psychological and clinical advantages of using a physical robot over screen-based interactions. While finishing his PhD in 2007, he founded his first company, Intuitive Automata, which created interactive coaches for weight loss. Though Intuitive Automata ceased operations in 2013, Dr Kidd harnessed his extensive knowledge of the healthcare business and the experiences from patient engagement and launched Catalia Health in 2014 with a new platform centered specifically around patient behavior change programs for chronic disease management. Originality/value Dr Kidd is a pioneer of social robotics and has developed groundbreaking technology for healthcare applications that combines artificial intelligence, psychology and medical best practices to deliver everyday care to patients who are managing chronic conditions. He holds patents, including one entitled Apparatus and Method for Assisting in Achieving Desired Behavior Patterns and in an Interactive Personal Health Promoting Robot. Dr Kidd was awarded the inaugural Wall Street Journal and Credit Suisse Technopreneur of the Year in 2010, which is meant to “honor the entry that best applies technology with the greatest potential for commercial success”. He is also the Director of Business Development for the nonprofit Silicon Valley Robotics and is an impact partner for Fresco Capital. He consults, mentors and serves as a Board Member and Advisor to several high-tech startups.


Author(s):  
Wang Zhenhua ◽  
Xu Hui ◽  
Chen Guodong ◽  
Sun Rongchuan ◽  
Lining Sun

Purpose – The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while the absolute positioning accuracy and distance accuracy are low. Many factors affect the absolute positioning accuracy and distance accuracy, and the calibration method of the industrial robot is an important factor. When the traditional calibration methods are applied on the industrial robot, the accumulative error will be involved according to the transformation between the measurement coordinate and the robot base coordinate. Design/methodology/approach – In this manuscript, a distance accuracy-based industrial robot kinematic calibration model is proposed. First, a simplified kinematic model of the robot by using the modified Denavit–Hartenberg (MDH) method is introduced, then the proposed distance error-based calibration model is presented; the experiment is set up in the next section. Findings – The experimental results show that the proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically. Originality/value – The proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry turned successful business leader, regarding the commercialization and challenges of bringing technological inventions to market while overseeing a company. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Gary Guthart, Chief Executive Officer (CEO) at Intuitive Surgical, Inc., and a member of the Board of Directors, both roles he has held since 2010. Guthart discusses his journey to becoming the CEO and also shares some of his lessons learned and challenges faced. Findings Guthart received a bachelor’s degree in engineering physics from California, Berkeley. He earned an MS and a PhD in engineering from the California Institute of Technology. Guthart’s first scientific experience came early in his career in a Human Factors Lab at NASA, supporting a team studying human performance assessment of pilots. Guthart was then part of the core team developing foundational technology for computer-enhanced surgery at SRI International. While at SRI, he also developed algorithms for vibration and acoustic control of large-scale systems. Guthart joined Intuitive Surgical as part of the first engineering team in 1996 as a Control Systems Analyst. He was promoted to Vice President of Engineering in 2002 and was appointed President and Chief Operating Officer in 2008. Originality/value Under Dr Gary Guthart’s leadership and his more than 25 years of medical technology, engineering, scientific and management experience, Intuitive Surgical, Inc., the world’s most successful medical robotics company, has grown to: more than 8,000 employees; nearly 6,000 da Vinci systems sold; more than 8.5 million procedures performed and an increase in stock (NASDAQ: ISRG) of more than 600%. Guthart is also on the Board of Directors for Illumina, Inc., and a member of the Board of Directors for the Silicon Leadership Group.


Sensor Review ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Guoyang Wan ◽  
Fudong Li ◽  
Wenjun Zhu ◽  
Guofeng Wang

Purpose The positioning and grasping of large-size objects have always had problems of low positioning accuracy, slow grasping speed and high application cost compared with ordinary small parts tasks. This paper aims to propose and implement a binocular vision-guided grasping system for large-size object with industrial robot. Design/methodology/approach To guide the industrial robot to grasp the object with high position and pose accuracy, this study measures the pose of the object by extracting and reconstructing three non-collinear feature points on it. To improve the precision and the robustness of the pose measuring, a coarse-to-fine positioning strategy is proposed. First, a coarse but stable feature is chosen to locate the object in the image and provide initial regions for the fine features. Second, three circular holes are chosen to be the fine features whose centers are extracted with a robust ellipse fitting strategy and thus determine the precise pose and position of the object. Findings Experimental results show that the proposed system has achieved high robustness and high positioning accuracy of −1 mm and pose accuracy of −0.5 degree. Originality/value It is a high accuracy method that can be used for industrial robot vision-guided and grasp location.


2015 ◽  
Vol 32 (5) ◽  
pp. 1432-1459 ◽  
Author(s):  
Guanxin Huang ◽  
Hu Wang ◽  
Guangyao Li

Purpose – The purpose of this paper is to enhance the feasibility of the edge-based smoothed triangular (EST) element, some modifications are made in this study. Design/methodology/approach – First, an efficient strategy based on graph theory is proposed to construct the edge system. Second, the stress is smoothed in global coordinate system based on edge instead of strain, which makes the theory of EST more rigorous and can be easily extended to the situation of multi elements sharing the same edge. Third, the singular degree of freedoms (DOFs) of the nodes linked by edges are restrained in edge local coordinate system, which makes the global stiffness matrix non-singular and can be decomposed successfully. Findings – First, an efficient edge constructing strategy can make EST element more standout. Second, some modifications should be made to EST element to extend it to the situation with multi elements sharing the same edge, so that EST element can deal with the geometrical models with this kind of features. Third, the way to restrain the singular DOFs of EST element must be different from normal isoparametric triangle element, because the stiffness matrix of the smoothing domain is not computed in local coordinate system. Originality/value – The modified EST element performs stably in engineering analysis including large scale problems and the situation with multi elements sharing the same edge, and the efficiency of edge system constructing is no longer the bottleneck.


2019 ◽  
Vol 25 (7) ◽  
pp. 1232-1240 ◽  
Author(s):  
Jianran Lv ◽  
Hongyao Shen ◽  
Jianzhong Fu

Purpose 3D printing for objects whose size exceeds the scope of the printer is still a tough challenge in application. The purpose of this paper is to propose a visual stitching large-scale (VSLS) 3D-printing method to solve this problem. Design/methodology/approach The single segmentation point method and multiple segmentation point method are proposed to adaptively divide each slice of the model into several segments. For each layer, the mobile robot will move to different positions to print each segment, and every time it arrives at the planned location, the contours of the printed segments are captured with a high-definition camera by the feature point recognition algorithm. Then, the coordinate transformation is implemented to adjust the printing codes of the next segment so that each part can be perfectly aligned. The authors print up layer by layer in this manner until the model is complete. Findings In Section 3, two specimens, whose sizes are 166 per cent and 252 per cent of the scope of the 3D-printing robot, are successfully printed. Meanwhile, the completed models of the specimens are printed using a suitable traditional printer for comparison. The result shows that the specimens in the test group have basically identical sizes to those in the control group, which verifies the feasibility of the VSLS method. Originality/value Unlike most of the current solutions that demand harsh requirement for positioning accuracy of the mobile robots, the authors use a camera to compensate for the lost positioning accuracy of the device during movement, thereby avoiding precise control to the device’s location. And the coordinate transformation is implemented to adjust the printing codes of the next sub-models so that each part can be aligned perfectly.


Author(s):  
Mehdi Dehghani ◽  
Mahdi Ahmadi ◽  
Alireza Khayatian ◽  
Mohamad Eghtesad ◽  
Mehran Yazdi

Purpose – The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial Bus (USB) camera and a chess pattern installed on the robot's mobile platform. Such an approach avoids using any internal sensors or complex three-dimensional measurement systems to obtain the pose (position/orientation) of the robot's end-effector or the joint coordinates. Design/methodology/approach – The setup of the proposed method is very simple; only one USB camera connected to a laptop computer is needed and no contact with the robot is necessary during the calibration procedure. For camera modeling, a pinhole model is used; it is then modified by considering some distortion coefficients. Intrinsic and extrinsic parameters and the distortion coefficients are found by an offline minimization algorithm. The chess pattern makes image corner detection very straightforward; this detection leads to finding the camera and then the kinematic parameters. To carry out the calibration procedure, several trajectories are run (the results of two of them are presented here) and sufficient specifications of the poses (positions/orientations) are calculated to find the kinematic parameters of the robot. Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. After successful calibration and addition of an appropriate control scheme, the robot has been considered as a color-painting prototype robot to serve in relevant industries. Findings – Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. Originality/value – The enhanced results show the advantages of this method in comparison with the previous calibration methods.


Author(s):  
Hua Liu ◽  
Weidong Zhu ◽  
Huiyue Dong ◽  
Yinglin Ke

Purpose This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position measurement of the end-effector. Design/methodology/approach The proposed model is established based on local frame representation of the product of exponentials (local POE) formula, which integrates all kinematic errors into the twist coordinates errors; then they are identified with the tool frame’ position deviations simultaneously by an iterative least squares algorithm. Findings To verify the effectiveness of the proposed method, extensive simulations and calibration experiments have been conducted on a 4DOF SCARA robot and a 5DOF drilling machine, respectively. The results indicate that the proposed model outperforms the existing model in convergence, accuracy, robustness and efficiency; fewer measurements are needed to gain an acceptable identification result. Practical implications This calibration method has been applied to a variable-radius circumferential drilling machine. The machine’s positioning accuracy can be significantly improved from 11.153 initially to 0.301 mm, which is well in the tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly. Originality/value An accurate and efficient kinematic calibration model has been proposed, which satisfies the completeness, continuity and minimality requirements. Due to generality, this model can be widely used for serial robot kinematic calibration with any combination of revolute and prismatic joints.


Author(s):  
Mustafa Cakir ◽  
Cengiz Deniz

Purpose The purpose of this study is to present a novel method for industrial robot TCP (tool center point) calibration. The proposed method offers fully automated robot TCP calibration within a defined cycle time. The method is applicable for large-scale installations due to its zero cost for each robot. Design/methodology/approach Precise and expensive measuring equipment or specially designed reference devices are required for robot calibration. The calibration can be performed by using only one plane plate in this method, and the calibration procedure is defined step by step: the robot moves to the target plane position. Then, the TCP touches the plane and the actual robot configuration is recorded. Then robot moves back into position and the same step is repeated for a new sample. Alternatively, the robot can be stationary and the plane can be moved towards the robot TCP. TCP is calculated by processing the difference of the contact points recorded at different positions. The process is fully automated. No special equipment is used. The calculations are very simple, and the robot controller can easily be realized. Findings The conventional manual robot TCP calibration process takes about 15 min and takes more time in case of the high accuracy. The proposed method reduces this time to less than 3 min without operator support. Practical tests have shown that TCP calibration can be performed with 0.1-0.6 mm of accuracy. This solution is an automated process and does not require special installation and it also has approximately zero cost. For this reason, this study recommends using the proposed solution widely in areas where even one or hundreds of robots are located. Research limitations/implications In this study, the data were directly taken from the robot controller without using any special measuring equipment. The industrial robot used in the tests has no absolute calibration. The classical “four-point method” was used for reference TCP data. It is the initial acceptance that this process conducted with extreme care and by using a needle-tipped tool will not produce exact values. It was observed that deviation of the TCP from a fixed point in reorient motions was not more than 0.5 mm. This method has been validated for different bits. The pilot works for different robot applications in Ford Otosan Gölcük Plant have been completed and dissemination has started. Originality/value Although the approach uses is clear and simple, it is surprising that the calculation of TCP using plane equations has so far not been mentioned in the literature. The disadvantage of using either fixed point or sphere as a reference is that the TCP cannot automatically guide to the target. This problem was overcome with the use of a larger target plane plate and the process was fully automated. The proposed method can be widely used in practical applications.


2020 ◽  
Vol 316 ◽  
pp. 01002
Author(s):  
Jinlong Zhao ◽  
Chunzhen Ren ◽  
Zhizhuo Cui ◽  
Fuzhou Du

In order to solve the problems of difficult assembly and adjustment and poor operation accessibility in the assembly process of multi-point pressure-type large-scale equipment on spacecraft, this paper presents a method of multi-point compact assembly of space mechanism driven by measurement. The method establishes the geometric constraint mathematical model of the equipment pressing mechanism, proposes the assembly coordinate system based on the mounting hole and the compensation method based on the rigid body transformation, and develops the relevant software according to the method. This method has been verified during the installation of the equipment and has achieved good results, which can be used as a reference for other digital assembly methods of aerospace equipment.


Sign in / Sign up

Export Citation Format

Share Document