Preliminary Hazard Analysis of Supercritical Fluid Separation of Energetic Materials.

1997 ◽  
Author(s):  
Lawrence J. Vande Kieft ◽  
Warren W. Hillstrom
2013 ◽  
Vol 767 ◽  
pp. 92-97
Author(s):  
Tei Saburi ◽  
Shiro Kubota ◽  
Yuji Wada ◽  
Masatake Yoshida

A multidimensional analysis code for reactive shocks (MARS), which is developed to solve various problems in the physical hazard analysis of high energetic materials, has been applied to such complex problems as multi-material problem and sympathetic problem because it can employ various types of equations of state and a materials database. However, it was difficult to meet a growing demand for large-scale analysis and fluid-structure interaction (FSI) analysis. To address these issues, this study reports a parallelization of the code and an implementation of the functional capability of FSI analysis, and performance results for sample problems were also shown.


1999 ◽  
Vol 38 (10) ◽  
pp. 3622-3627 ◽  
Author(s):  
James S. Brown ◽  
Heather P. Lesutis ◽  
David R. Lamb ◽  
David Bush ◽  
Karen Chandler ◽  
...  

2012 ◽  
Vol 82 (3) ◽  
pp. 216-222 ◽  
Author(s):  
Venkatesh Iyengar ◽  
Ibrahim Elmadfa

The food safety security (FSS) concept is perceived as an early warning system for minimizing food safety (FS) breaches, and it functions in conjunction with existing FS measures. Essentially, the function of FS and FSS measures can be visualized in two parts: (i) the FS preventive measures as actions taken at the stem level, and (ii) the FSS interventions as actions taken at the root level, to enhance the impact of the implemented safety steps. In practice, along with FS, FSS also draws its support from (i) legislative directives and regulatory measures for enforcing verifiable, timely, and effective compliance; (ii) measurement systems in place for sustained quality assurance; and (iii) shared responsibility to ensure cohesion among all the stakeholders namely, policy makers, regulators, food producers, processors and distributors, and consumers. However, the functional framework of FSS differs from that of FS by way of: (i) retooling the vulnerable segments of the preventive features of existing FS measures; (ii) fine-tuning response systems to efficiently preempt the FS breaches; (iii) building a long-term nutrient and toxicant surveillance network based on validated measurement systems functioning in real time; (iv) focusing on crisp, clear, and correct communication that resonates among all the stakeholders; and (v) developing inter-disciplinary human resources to meet ever-increasing FS challenges. Important determinants of FSS include: (i) strengthening international dialogue for refining regulatory reforms and addressing emerging risks; (ii) developing innovative and strategic action points for intervention {in addition to Hazard Analysis and Critical Control Points (HACCP) procedures]; and (iii) introducing additional science-based tools such as metrology-based measurement systems.


Sign in / Sign up

Export Citation Format

Share Document