Experimental studies on supercritical fluid separation processes

2007 ◽  
Vol 46 (1) ◽  
pp. 1-10 ◽  
Author(s):  
S. F. Y. Li
2021 ◽  
Author(s):  
Fabian Jirasek ◽  
Jakob Burger ◽  
Hans Hasse

The conceptual design of fluid separation processes is particularly challenging if the considered mixtures are poorly specified, since classical thermodynamic models cannot be applied when the composition is unknown. We have recently developed a method (NEAT) to predict activity coefficients in such mixtures. It combines the thermodynamic group contribution concept with the ability of NMR spectroscopy to quantify chemical groups. In the present work, we describe how NEAT can be applied to equilibrium stage simulations of liquid–liquid extraction processes with poorly specified feeds. Only a single 13C NMR spectrum of the feed is needed for predicting the distribution of a target component for different process parameters, such as temperature or extracting agent. The predictions from several test cases are compared to results that are obtained using the full knowledge on the composition of the feed and surprisingly good agreement is found.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2009 ◽  
Vol 4 (5) ◽  
Author(s):  
Eugeny Y. Kenig

Modern fluid separation processes occur under very complex conditions. As a result, their modeling is usually based on severe assumptions and experimentally estimated gross parameters. On the other hand, the process optimization can only be achieved with reasonable model accuracy, whereas the process rates should be considered in a rigorous way, with respect to both transport phenomena and chemistry.Depending on the complexity of process fluid dynamics, different modeling ways can be applied, their rigor and complexity stretching over a wide range. Among these ways are a direct application of the equations of fluid dynamics, the hydrodynamic analogy method and the rate-based approach. These methods are complementary in the sense that, together, they are able to govern both simple and very complex process fluid dynamic conditions. Moreover, there is also another complementarity between the different approaches, namely, they can be applied in combination, for instance, by estimating process parameters by a more rigorous method and delivering them to the less rigorous one. In this contribution, the complementary modeling is discussed in detail and illustrated with case studies.


Sign in / Sign up

Export Citation Format

Share Document