The Asymmetry Parameter and Aggregate Particles

1997 ◽  
Author(s):  
Gorden Videen ◽  
Ronald G. Pinnick ◽  
Dat Ngo ◽  
Qiang Fu ◽  
Petr Chylek
1982 ◽  
Vol 21 ◽  
Author(s):  
G. v. Gehlen

ABSTRACTFinite-size scaling is applied to the Hamiltonian version of the asymmetric Z3-Potts model. Results for the phase boundary of the commensurate region and for the corresponding critical index ν are presented. It is argued that there is no Lifshitz point, the incommensurate phase extending down to small values of the asymmetry parameter.


1967 ◽  
Vol 7 (1) ◽  
pp. 103-106
Author(s):  
N. E. Ainbinder ◽  
V. S. Grechishkin ◽  
A. N. Osipenko

1974 ◽  
Vol 49 (4) ◽  
pp. 315-317 ◽  
Author(s):  
P.-G. Reinhard ◽  
P. Lichtner ◽  
D. Dreschsel

1996 ◽  
Vol 51 (5-6) ◽  
pp. 363-367 ◽  
Author(s):  
Nicolai Sinyavsky ◽  
Michał Ostafin ◽  
Mariusz Maćkowiak

Abstract The method of two-dimensional nutation NQR spectroscopy, introduced by Harbison in 1989, has been successfully used for determining of the asymmetry parameter of the EFG tensor for spin-3/2 nuclei in both powdered and monocrystal samples in the absence of an external magnetic field. The inconvenience inherent in the method, however, is the long time required, because data acquisition must be repeated for various RF pulse lengths. We discuss a method to reduce the time of the nutation experiment by using a sequence of identical short RF pulses of length r w and distance τ. It is shown that for an NQR frequency ω0 , frequency offset Δω, and pulse parameters satisfying the relation ω0τ + Δωtw = 2πk (k = 1, 2, 3,..., n) a synchronism of pulse action takes place and the nutation interferogram can be measured "stroboscopically" between the pulses. The maximum time saving factor that can be obtained as compared to the conventional nutation experiment is of the order of the number of pulses used in a pulse train. The method has been successfully applied for determination of the asymmetry parameter for one of the two 3 5 Cl sites in polycrystalline 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride).


2017 ◽  
Vol 32 (11) ◽  
pp. 1750060 ◽  
Author(s):  
Ahmed Rashed ◽  
Alakabha Datta

Crucial developments in neutrino physics would be the determination of the mass hierarchy (MH) and measurement of the CP phase in the leptonic sector. The patterns of the transition probabilities [Formula: see text] and [Formula: see text] are sensitive to these oscillation parameters. An asymmetry parameter can be defined as the difference of these two probabilities normalized to their sum. The profile of the asymmetry parameter gives a clear signal of the mass ordering as it is found to be positive for inverted hierarchy and negative for normal hierarchy. The asymmetry parameter is also sensitive to the CP phase. We consider the effects of nonstandard neutrino interactions (NSI) on the determination of the mass hierarchy. Since we assume the largest new physics effects involve the [Formula: see text] sector only, we ignore NSI in production and study the NSI effects in detection as well as along propagation. We find that the NSI effects can significantly modify the prediction of the asymmetry parameter though the MH can still be resolved.


Sign in / Sign up

Export Citation Format

Share Document