scholarly journals Designing Optimal Generalized Hill Climbing Algorithms with Applications to Discrete Manufacturing Process Design Optimization

2003 ◽  
Author(s):  
Sheldon H. Jacobson
2000 ◽  
Vol 122 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Diane E. Vaughan ◽  
Sheldon H. Jacobson ◽  
Derek E. Armstrong

Discrete manufacturing process design optimization can be difficult, due to the large number of manufacturing process design sequences and associated input parameter setting combinations that exist. Generalized hill climbing algorithms have been introduced to address such manufacturing design problems. Initial results with generalized hill climbing algorithms required the manufacturing process design sequence to be fixed, with the generalized hill climbing algorithm used to identify optimal input parameter settings. This paper introduces a new neighborhood function that allows generalized hill climbing algorithms to be used to also identify the optimal discrete manufacturing process design sequence among a set of valid design sequences. The neighborhood function uses a switch function for all the input parameters, hence allows the generalized hill climbing algorithm to simultaneously optimize over both the design sequences and the inputs parameters. Computational results are reported with an integrated blade rotor discrete manufacturing process design problem under study at the Materials Process Design Branch of the Air Force Research Laboratory, Wright Patterson Air Force Base (Dayton, Ohio, USA). [S1050-0472(00)01002-3]


2013 ◽  
Vol 397-400 ◽  
pp. 57-61
Author(s):  
Dong Jie Zhong

Green manufacturing process is a key segment to guarantee green degree of products manufacturing course. In this paper, a kind of design system is presented by analyzing the function demand of the design system for green manufacturing process and then the modules which constituent the design system are analyzed in detail. Moreover, according to the design principle and the estimate indexes of green manufacturing process, the operation flow of the design system is introduced.


Author(s):  
Jesse D. Peplinski ◽  
Janet K. Allen ◽  
Farrokh Mistree

Abstract How can the manufacturability of different product design alternatives be evaluated efficiently during the early stages of concept exploration? The benefits of such integrated product and manufacturing process design are widely recognized and include faster time to market, reduced development costs and production costs, and increased product quality. To reap these benefits fully, however, one must examine product/process trade-offs and cost/schedule/performance trade-offs in the early stages of design. Evaluating production cost and lead time requires detailed simulation or other analysis packages which 1) would be computationally expensive to run for every alternative, and 2) require detailed information that may or may not be available in these early design stages. Our approach is to generate response surfaces that serve as approximations to the analyses packages and use these approximations to identify robust regions of the design space for further exploration. In this paper we present a method for robust product and process exploration and illustrate this method using a simplified example of a machining center processing a single component. We close by discussing the implications of this work for manufacturing outsourcing, designing robust supplier chains, and ultimately designing the manufacturing enterprise itself.


1999 ◽  
Author(s):  
Craig Schlenoff ◽  
Mihai Ciocoiu ◽  
Don Libes ◽  
Michael Gruninger

Abstract In all types of communication, the ability to share information is often hindered because the meaning of information can be drastically affected by the context in which it is viewed and interpreted. This is especially true in manufacturing because of the growing complexity of manufacturing information and the increasing need to exchange this information among various software applications. Different manufacturing functions may use different terms to mean the exact same concept or use the exact same term to mean very different concepts. Often, the loosely defined natural language definitions associated with the terms contain so much ambiguity that they do not make the differences evident and/or do not provide enough information to resolve the differences. A solution to this problem is the development of a taxonomy, or ontology, of manufacturing concepts and terms along with their respective formal and unambiguous definitions. This paper focuses on the Process Specification Language (PSL) effort at the National Institute of Standards and Technology whose goal is to identify, formally define, and structure the semantic concepts intrinsic to the capture and exchange of discrete manufacturing process information. Specifically, it describes the results of the first pilot implementation, where PSL was successfully used as an interlingua to exchange manufacturing process information between the IDEF3-based ProCAP1 process modeling tool and the C++ based ILOG Scheduler.


Author(s):  
George Chryssolouris ◽  
Dimitris Mavrikios ◽  
Dimitris Fragos ◽  
Vassiliki Karabatsou

Sign in / Sign up

Export Citation Format

Share Document