Weapon System Software Technology Support (WSSTS). Delivery Order 0008: Real-Time Java for Embedded Systems (RTJES)

2004 ◽  
Author(s):  
Edward Pla
Author(s):  
Florian Kriebel ◽  
Kuan-Hsun Chen ◽  
Semeen Rehman ◽  
Jörg Henkel ◽  
Jian-Jia Chen ◽  
...  

AbstractFor generating and executing dependable software, the effects of hardware layer faults at the software layer have to be accurately analyzed and modeled. This requires relevant information from the hardware and software layers, as well as an in-depth analysis of how an application’s outputs are affected by errors, and quantifying the error masking and error propagation on the software layer. Based on this analysis, techniques for generating dependable software can be proposed, e.g., by different dependability-aware compiler-based software transformations or selective instruction protection. Beside functional aspects, timing also plays an important role, as oftentimes tasks have to be finished before a certain deadline to provide useful information, especially in real-time systems. Both aspects are jointly taken into account by the run-time system software which decides—with the help of offline and online-generated data—for multiple concurrently executing applications how to protect and when to execute which application task to optimize for dependability and timing correctness. This is achieved for example by selecting appropriate application versions and protection levels for single and multi-core systems—for example using redundant multithreading (RMT) in different modes—under tolerable performance overhead constraints.


2021 ◽  
Vol 43 (2) ◽  
pp. 51-67
Author(s):  
P.Y. Katin ◽  
◽  
O.A. Pokhylenko ◽  

Розроблено типові програмні шаблони Стан (State pattern) в процедурному і об’єктно-орієнтованому програмуванні, які дозволяють уніфікувати вихідний код системного програмного забезпечення для мікроконтролерів архітектури Сortex-М різних вироб­ників. Програмне забезпечення адаптовано до математичної моделі кінцевого автомата (finite-state machine (FSM)). Результати пройшли випробування на мікроконтролерах серії STM32F1хх. Застосована методика [1] дозволяє поширити отримане рішення на мікроконтролери інших виробників, що підтверджує цінність розроблених шаблонів.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


Author(s):  
Jaiganesh Balasubramanian ◽  
Sumant Tambe ◽  
Balakrishnan Dasarathy ◽  
Shrirang Gadgil ◽  
Frederick Porter ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


Sign in / Sign up

Export Citation Format

Share Document