Speaking with a Commonality Language: A Lexicon for System and Component Development

2007 ◽  
Author(s):  
Bruce Newsome ◽  
Matthew W. Lewis ◽  
Thomas Held
1993 ◽  
Vol 327 ◽  
Author(s):  
J. W. Adams ◽  
R. E. Barlettia ◽  
J. Svandrlik ◽  
P. E. Vanier

AbstractAs a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR) have been evaluated.Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3000 K were used and samples were exposed in a cyclical fashion, cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.


1992 ◽  
Vol 21 (3P2B) ◽  
pp. 1805-1816 ◽  
Author(s):  
R. T. McGrath ◽  
A. J. Russo ◽  
R. B. Campbell ◽  
R. D. Watson

Author(s):  
Jati H. Husen ◽  
Hnin Thandar Tun ◽  
Nobukazu Yoshioka ◽  
Hironori Washizaki ◽  
Yoshiaki Fukazawa

Author(s):  
Robert W. Walter ◽  
Reid R. June ◽  
Jack E. Mooney ◽  
Robert A. Hamm

Author(s):  
Christian Felsmann ◽  
Uwe Gampe ◽  
Manfred Freimark

Solar hybrid gas turbine technology has the potential to increase the efficiency of future solar thermal power plants by utilizing solar heat at a much higher temperature level than state of the art plants based on steam turbine cycles. In a previous paper the authors pointed out, that further development steps are required for example in the field of component development and in the investigation of the system dynamics to realize a mature technology for commercial application [1]. In this paper new findings on system dynamics are presented based on the simulation model of a solar hybrid gas turbine with parallel arrangement of the combustion chamber and solar receivers. The operational behavior of the system is described by means of two different scenarios. The System operation in a stand-alone electrical supply network is investigated in the first scenario. Here it is shown that fast load changes in the network lead to a higher shaft speed deviation of the electric generator compared to pure fossil fired systems. In the second scenario a generator load rejection, as a worst case, is analyzed. The results make clear that additional relief concepts like blow-off valves are necessary as the standard gas turbine protection does not meet the specific requirements of the solar hybrid operation. In general the results show, that the solar hybrid operational modes are much more challenging for the gas turbines control and safety system compared to pure fossil fired plants due to the increased volumetric storage capacity of the system.


Sign in / Sign up

Export Citation Format

Share Document