Multi-Scale Simulation of High Energy Density Ionic Liquids

2007 ◽  
Author(s):  
Gregory A. Voth
2008 ◽  
Author(s):  
Joseph C. Foster ◽  
D. Scott Stewart ◽  
Keith Thomas ◽  
Mark Elert ◽  
Michael D. Furnish ◽  
...  

2017 ◽  
Vol 5 (11) ◽  
pp. 5523-5531 ◽  
Author(s):  
Li Liu ◽  
Lijun Su ◽  
Junwei Lang ◽  
Bin Hu ◽  
Shan Xu ◽  
...  

Supercapacitors using ionic liquids (ILs) as electrolytes have triggered great interest due to their much higher energy density when compared to aqueous supercapacitors.


2005 ◽  
Vol 152 (4) ◽  
pp. A710 ◽  
Author(s):  
Yong-Jung Kim ◽  
Yutaka Matsuzawa ◽  
Shinya Ozaki ◽  
Ki Chul Park ◽  
Chan Kim ◽  
...  

2021 ◽  
Author(s):  
Preeti Jain ◽  
Oleg N. Antzutkin

<p>We report a comparative analysis of non-halogenated surface-active ionic liquids (SAILs), which consists of the surface-active anion, 2-ethylhexyl sulfate, and the phosphonium, and imidazolium cations <i>i.e.,</i> tetrabutylphosphonium ([P<sub>4444</sub>]<sup>+</sup>), trihexyl(tetradecyl)phosphonium ([P<sub>66614</sub>]<sup>+</sup>), and 1-methyl-3-hexylimidazolium ([C<sub>6</sub>C<sub>1</sub>IM]<sup>+</sup>). We explored the thermal and electrochemical properties, <i>i.e.</i>, degradation, melting and crystallization temperatures, and ionic conductivity of this new class of IL. These SAILs were tested as an electrolyte in a multi-walled carbon nanotubes (MWCNTs)-based supercapacitor at various temperatures from 253 to 373 K. The electrochemical performance of different SAILs by varying the cationic core as a function of temperature were compared, in the same MWCNT-based supercapacitor. We found that the supercapacitor cell with [C<sub>6</sub>C<sub>1</sub>IM][EHS] shown high specific capacitance (<i>C<sub>elec</sub></i> in F g<sup>-1</sup>), a high energy density (<i>E</i> in Wh kg<sup>-1</sup>), and a high power density (<i>P</i> in kW kg<sup>-1</sup>) when compared to those for the other SAILs <i>i.e.</i> [P<sub>4444</sub>][EHS], [P<sub>66614</sub>][EHS], and [N<sub>8888</sub>][EHS] at all temperatures. The supercapacitor with an MWCNT-based electrode and [C<sub>6</sub>C<sub>1</sub>IM][EHS], [P<sub>4444</sub>][EHS], and [P<sub>66614</sub>][EHS] as an electrolyte showed a specific capacitance of 148, 90, and 47 F g<sup>-1</sup> (at the scan rate of 2 mV s<sup>-1</sup>) with an energy density of 82, 50, and 26 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>) respectively, at 298 K. The temperature effect can be seen by the three to four-fold increase in the specific capacitance of the cell and the energy density values, <i>i.e.</i>, 290, 198, and 114 F g<sup>-1</sup> (at 2 mV s<sup>-1</sup>) and 161, 110, and 63 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>), respectively, at 373 K. This study reveals that these new SAILs specifically [C<sub>6</sub>C<sub>1</sub>IM][EHS] and [P<sub>4444</sub>][EHS] can potentially be used as electrolytes in the wide range of temperature. The solution resistance (<i>R<sub>s</sub></i>), charge transfer resistance (<i>R<sub>ct</sub></i>), and equivalent series resistance (ESR) also decreased with an increase in temperature for all SAILs as electrolytes. These new SAILs can explicitly be used for high-temperature (wide range of temperature) electrochemical applications, such as efficient supercapacitors for high energy storage due to enhanced specific capacitance, energy, and power density at elevated temperatures. </p>


2021 ◽  
Author(s):  
Preeti Jain ◽  
Oleg N. Antzutkin

<p>We report a comparative analysis of non-halogenated surface-active ionic liquids (SAILs), which consists of the surface-active anion, 2-ethylhexyl sulfate, and the phosphonium, and imidazolium cations <i>i.e.,</i> tetrabutylphosphonium ([P<sub>4444</sub>]<sup>+</sup>), trihexyl(tetradecyl)phosphonium ([P<sub>66614</sub>]<sup>+</sup>), and 1-methyl-3-hexylimidazolium ([C<sub>6</sub>C<sub>1</sub>IM]<sup>+</sup>). We explored the thermal and electrochemical properties, <i>i.e.</i>, degradation, melting and crystallization temperatures, and ionic conductivity of this new class of IL. These SAILs were tested as an electrolyte in a multi-walled carbon nanotubes (MWCNTs)-based supercapacitor at various temperatures from 253 to 373 K. The electrochemical performance of different SAILs by varying the cationic core as a function of temperature were compared, in the same MWCNT-based supercapacitor. We found that the supercapacitor cell with [C<sub>6</sub>C<sub>1</sub>IM][EHS] shown high specific capacitance (<i>C<sub>elec</sub></i> in F g<sup>-1</sup>), a high energy density (<i>E</i> in Wh kg<sup>-1</sup>), and a high power density (<i>P</i> in kW kg<sup>-1</sup>) when compared to those for the other SAILs <i>i.e.</i> [P<sub>4444</sub>][EHS], [P<sub>66614</sub>][EHS], and [N<sub>8888</sub>][EHS] at all temperatures. The supercapacitor with an MWCNT-based electrode and [C<sub>6</sub>C<sub>1</sub>IM][EHS], [P<sub>4444</sub>][EHS], and [P<sub>66614</sub>][EHS] as an electrolyte showed a specific capacitance of 148, 90, and 47 F g<sup>-1</sup> (at the scan rate of 2 mV s<sup>-1</sup>) with an energy density of 82, 50, and 26 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>) respectively, at 298 K. The temperature effect can be seen by the three to four-fold increase in the specific capacitance of the cell and the energy density values, <i>i.e.</i>, 290, 198, and 114 F g<sup>-1</sup> (at 2 mV s<sup>-1</sup>) and 161, 110, and 63 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>), respectively, at 373 K. This study reveals that these new SAILs specifically [C<sub>6</sub>C<sub>1</sub>IM][EHS] and [P<sub>4444</sub>][EHS] can potentially be used as electrolytes in the wide range of temperature. The solution resistance (<i>R<sub>s</sub></i>), charge transfer resistance (<i>R<sub>ct</sub></i>), and equivalent series resistance (ESR) also decreased with an increase in temperature for all SAILs as electrolytes. These new SAILs can explicitly be used for high-temperature (wide range of temperature) electrochemical applications, such as efficient supercapacitors for high energy storage due to enhanced specific capacitance, energy, and power density at elevated temperatures. </p>


2018 ◽  
Vol 32 (7) ◽  
pp. 7898-7908 ◽  
Author(s):  
Jiang Yu ◽  
Tonya N. Jensen ◽  
William K. Lewis ◽  
Christopher E. Bunker ◽  
Steven P. Kelley ◽  
...  

2016 ◽  
Vol 4 (13) ◽  
pp. 4763-4770 ◽  
Author(s):  
Chang Hyo Kim ◽  
Jae-Hyung Wee ◽  
Yoong Ahm Kim ◽  
Kap Seung Yang ◽  
Cheol-Min Yang

Carbon based supercapacitor with ultra-high energy density was developed by using pore structure tailored carbon nanofibers and ionic liquid.


Sign in / Sign up

Export Citation Format

Share Document