Development of Antibodies Against Novel Cell Surface Proteins in Hormone Refractory Prostate Cancer

2007 ◽  
Author(s):  
Zev Wainberg
2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A60-A61
Author(s):  
Damien A Leach ◽  
Mohr Andrea ◽  
Ralf Zwacka ◽  
Stathis Giottis ◽  
Laura Yates ◽  
...  

Abstract The SARS-CoV-2 coronavirus is the cause of the COVID-19 pandemic. Entry of the virus into host cells, most destructively lung cells, requires two host cell surface proteins, ACE2 and TMPRSS2, downregulation of which is thus a potential therapeutic approach for COVID-19. Both of these cell surface proteins are steroid regulated: TMPRSS2 is a well-characterised androgen-regulated target in prostate cancer. Analysis of sequencing data shows co-expression of the androgen receptor (AR) and TMPRSS2 in key human lung cell types that are targeted by SARS- CoV-2. We show that treatment with antiandrogens such as enzalutamide (a well-tolerated drug widely used in advanced prostate cancer) significantly reduces TMPRSS2 levels in human lung cells and in vivo in mouse lung. We demonstrate that AR binding in the region of the TMPRSS2 gene differs between lung and prostate, identifying distinct regulatory regions. Together, the data and evidence presented supports clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


2007 ◽  
Vol 177 (4S) ◽  
pp. 202-202
Author(s):  
Hirotsugu Uemura ◽  
Motoyoshi Tanaka ◽  
Shigeya Uejima ◽  
Takafumi Minami ◽  
Kiyohide Fujimoto ◽  
...  

2005 ◽  
Vol 173 (4S) ◽  
pp. 225-225
Author(s):  
Peter Olbert ◽  
Andres J. Schrader ◽  
Axel Hegele ◽  
Zoltan Varga ◽  
Axel Heidenreich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document