Multiscale Deterministic Wave Modeling with Wind Input and Wave Breaking Dissipation

2007 ◽  
Author(s):  
Liam Shen
2007 ◽  
Vol 37 (11) ◽  
pp. 2764-2775 ◽  
Author(s):  
Alexander V. Babanin ◽  
Michael L. Banner ◽  
Ian R. Young ◽  
Mark A. Donelan

Abstract This is the third in a series of papers describing wave-follower observations of the aerodynamic coupling between wind and waves on a large shallow lake during the Australian Shallow Water Experiment (AUSWEX). It focuses on the long-standing problem of the aerodynamic consequences of wave breaking on the wind–wave coupling. Direct field measurements are reported of the influence of wave breaking on the wave-induced pressure in the airflow over water waves, and hence the energy flux to the waves. The level of forcing, measured by the ratio of wind speed to the speed of the dominant (spectral peak) waves, covered the range of 3–7. The propagation speeds of the dominant waves were limited by the water depth and the waves were correspondingly steep. These measurements allowed an assessment of the magnitude of any breaking-induced enhancement operative for these field conditions and provided a basis for parameterizing the effect. Overall, appreciable levels of wave breaking occurred for the strong wind forcing conditions that prevailed during the observational period. Associated with these breaking wave events, a significant phase shift is observed in the local wave-coherent surface pressure. This produced an enhanced wave-coherent energy flux from the wind to the waves with a mean value of 2 times the corresponding energy flux to the nonbreaking waves. It is proposed that the breaking-induced enhancement of the wind input to the waves can be parameterized by the sum of the nonbreaking input and the contribution due to the breaking probability.


2014 ◽  
Vol 522-524 ◽  
pp. 995-999
Author(s):  
Hua Chen Pan ◽  
Zhi Guang Zhang

A form of hyperbolic mild-slope equations extended to account for rapidly varying topography, nonlinear dispersion relation, wind input and energy dissipation during the process of wave propagation, has been derived from the mild-slope equation modified first in this paper. With the inclusion of the input of wind energy, the resultant model can be applied in some areas where the effect of wind could not be neglected. The wave-breaking mechanism which will cause energy dissipation remarkably, as well as the bottom friction, is introduced and discussed during this derivation. Since the modifying factors have taken plenty of aspects into consideration, the extended equations hold enlarged application and increased accuracy.


2016 ◽  
Vol 103 ◽  
pp. 18-37 ◽  
Author(s):  
Andrei Pushkarev ◽  
Vladimir Zakharov

Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


2000 ◽  
Author(s):  
Hans C. Graber ◽  
Mark A. Donelan ◽  
William M. Drennan ◽  
Fred W. Dobson

2002 ◽  
Author(s):  
David M. Farmer ◽  
Johannes Gemmrich

Sign in / Sign up

Export Citation Format

Share Document