shoaling waves
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 1)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 9 (2) ◽  
pp. 214
Author(s):  
Adam C. Brown ◽  
Robert K. Paasch

A spherical wave measurement buoy capable of detecting breaking waves has been designed and built. The buoy is 16 inches in diameter and houses a 9 degree of freedom inertial measurement unit (IMU). The orientation and acceleration of the buoy is continuously logged at frequencies up to 200 Hz providing a high fidelity description of the motion of the buoy as it is impacted by breaking waves. The buoy was deployed several times throughout the winter of 2013–2014. Both moored and free-drifting data were acquired in near-shore shoaling waves off the coast of Newport, OR. Almost 200 breaking waves of varying type and intensity were measured over the course of multiple deployments. The characteristic signature of spilling and plunging breakers was identified in the IMU data.



2020 ◽  
Vol 8 (4) ◽  
pp. 281
Author(s):  
Massimiliano Marino ◽  
Carla Faraci ◽  
Rosaria Ester Musumeci

In the present work, an experimental investigation on the hydrodynamics of shoaling waves superposed on a steady orthogonal current is carried out. An experimental campaign in a wave tank has been performed, with waves and current interacting at a right angle over a sloping planar beach. Velocity data have been gathered during the experiments in order to investigate mean, phase and turbulent flow. A detailed preliminary analysis of the time- and space-variability of the experiments is presented. Results show that a complex interaction between waves and current occurs as the wave shoals, in terms of sheer production, momentum transfer and turbulent mixing. Superposition of waves determines a shear increase at the bottom due to an enhanced turbulence mixing, nonetheless as depth decreases and the current velocity consequently increases, shoaling waves may be less efficient in enhancing shear at the bottom. Moreover, the superposition of waves determines the current to oscillate around its mean velocity value. Nevertheless, as wave shoals and simultaneously current velocity increases with decreasing depth, waves and current oscillatory motion experience a phase lag, as a response of the larger momentum of the current to the changing of the shoaling waves acceleration distribution along the wave phase. Moreover, the turbulent bursting events of the combined flow in proximity of the bed have been investigated by means of quadrant analysis, showing an increase of the turbulent ejections and sweeps due to the superposition of the shoaling waves.



Author(s):  
Jing Yuan ◽  
Dongxu Wang

Moderate shoaling waves usually generate some small-scale bottom bedforms, i.e. sand ripples, which are 1-10cm tall and 10-100cm long. Wave-induced boundary layer flows over sand ripples are characterized by coherent vortices, which are alternatively generated on both sizes of ripples under the oscillatory free-stream motion. This process leads to a form drag, which significantly increases the local flow resistance. A large equivalent sand-grain roughness scaled with ripple dimension is therefore adopted in coastal models to account for ripple presences. Very few quantitative experimental results on this topic are available in the literature, so this study is aimed at filling this gap.



2017 ◽  
Vol 47 (8) ◽  
pp. 2115-2122 ◽  
Author(s):  
Jamie MacMahan

AbstractDrag coefficients Cd obtained through direct eddy covariance estimates of the wind stress were observed at four different sandy beaches with dissipative surfzones along the coastline of Monterey Bay, California. The measured surfzone Cd (~2 × 10−3) is twice as large as open-ocean estimates and consistent with recent estimates of Cd over the surfzone and shoaling region. Owing to the heterogeneous nature of the near shore consisting of nonbreaking shoaling waves and breaking surfzone waves, the surfzone wind stress source region is estimated from the footprint probability distribution derived for stable and unstable atmospheric conditions. An empirical model developed for estimating the Cd for open-ocean foam coverage dependent on wind speed is modified for foam coverage owing to depth-limited wave breaking within the surfzone. A modified empirical Cd model for surfzone foam predicts similar values as the measured Cd and provides an alternative mechanism to describe roughness.



2017 ◽  
Vol 47 (4) ◽  
pp. 827-833 ◽  
Author(s):  
Uri Itay ◽  
Dan Liberzon

AbstractAn experimental study was conducted with the aim of validating the Lagrangian kinematic criterion (LKC) for the case of breaking of shoaling waves. Monochromatic wave trains were generated in a large wave flume and allowed to shoal and break naturally on an artificial inclination changeable shore, thus allowing inspection of a range of slopes. Instantaneous horizontal Lagrangian water surface velocity was measured by particle tracking velocimetry and compared to the instantaneous propagation speed of the crest on a verge of breaking, the latter calculated using time series produced by resistance-type wave gauges staged along the flume. The inception of a breaker was found to occur when the monotonically increasing horizontal water velocity on the crest, during the process of steepening, approached that of the slowing steep crest, thus confirming the LKC for shoaling conditions. In addition, an objective method of breaking detection was developed utilizing the phase–time method and wavelet analysis by recognizing a specific pattern in the instantaneous local frequency fluctuations. The two main expected contributions of this study are the formation of an applicable criterion for breaking occurrences in shoaling waves and development of a wave breaking detection method independent of human decision. Incorporation of the suggested criterion into existing waves prediction models can be a significant contribution to maritime projects efficiency, whereas the breakers detection method will be useful for conducting further experimental research on waves breaking both in laboratory installations and in the highly unstable environment of an open sea.



2015 ◽  
Vol 22 (3) ◽  
pp. 289-312 ◽  
Author(s):  
K. G. Lamb ◽  
A. Warn-Varnas

Abstract. The interaction of barotropic tides with Luzon Strait topography generates some of the world's largest internal solitary waves which eventually shoal and dissipate on the western side of the northern South China Sea. Two-dimensional numerical simulations of the shoaling of a single internal solitary wave at the site of the Asian Seas International Acoustic Experiment (ASIAEX) have been undertaken in order to investigate the sensitivity of the shoaling process to the stratification and the underlying bathymetry and to explore the influence of rotation. The bulk of the simulations are inviscid; however, exploratory simulations using a vertical eddy-viscosity confined to a near bottom layer, along with a no-slip boundary condition, suggest that viscous effects may become important in water shallower than about 200 m. A shoaling solitary wave fissions into several waves. At depths of 200–300 m the front of the leading waves become nearly parallel to the bottom and develop a very steep back as has been observed. The leading waves are followed by waves of elevation (pedestals) that are conjugate to the waves of depression ahead and behind them. Horizontal resolutions of at least 50 m are required to simulate these well. Wave breaking was found to occur behind the second or third of the leading solitary waves, never at the back of the leading wave. Comparisons of the shoaling of waves started at depths of 1000 and 3000 m show significant differences and the shoaling waves can be significantly non-adiabatic even at depths greater than 2000 m. When waves reach a depth of 200 m, their amplitudes can be more than 50% larger than the largest possible solitary wave at that depth. The shoaling behaviour is sensitive to the presence of small-scale features in the bathymetry: a 200 m high bump at 700 m depth can result in the generation of many mode-two waves and of higher mode waves. Sensitivity to the stratification is considered by using three stratifications based on summer observations. They primarily differ in the depth of the thermocline. The generation of mode-two waves and the behaviour of the waves in shallow water is sensitive to this depth. Rotation affects the shoaling waves by reducing the amplitude of the leading waves via the radiation of long trailing inertia-gravity waves. The nonlinear-dispersive evolution of these inertia-gravity waves results in the formation of secondary mode-one wave packets.



2013 ◽  
Vol 54 (6) ◽  
Author(s):  
Francesca De Serio ◽  
Michele Mossa


2010 ◽  
Vol 80 (9) ◽  
pp. 781-790 ◽  
Author(s):  
N. Yamaguchi ◽  
H. Sekiguchi
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document