beach profile
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 47)

H-INDEX

23
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3527
Author(s):  
Ria Rista Rahmawati ◽  
Anthony Harlly Sasono Putro ◽  
Jung Lyul Lee

Recently, many rigid structures have been installed to cope with and efficiently manage coastal erosion. However, the changes in the coastline or isocenter and the movements of coastal sediment are poorly understood. This study examined the equilibrium shoreline and isocenter lines by applying a Model of Estimating Equilibrium Parabolic-type Shoreline (MeEPASoL) as an equilibrium shoreline prediction model. In addition, the inverse method was used to estimate littoral drift sediment transport from long-term beach profile observations. The movement of coastal sediments was analyzed using long-term beach profile observation data for three Indonesian beaches, namely, Kuta Beach for 13 years, Karang Beach in Sanur for 15 years, and Samuh Beach in Nusa Dua for 18 years. The littoral drift at every site was dynamically controlled by seasonal changes in the monsoon, the erosion and deposition patterns coupled with the presence of coastal structures, and limited sediment movement. Shoreline deformation in Kuta is generally backward deformed, with a littoral drift from south to north. In Sanur, the littoral drift vector carries sediment from the right and left sides and forms a salient behind the offshore breakwater. The littoral drift at Nusa Dua is dominantly from south to north, but the force of sediment transport decreases near the breakwater towards the north. Furthermore, the methods applied herein could aid the development of strategic coastal management plans to control erosion in subcells of coastal areas.


2021 ◽  
Vol 925 (1) ◽  
pp. 012040
Author(s):  
R. R. Rahmawati ◽  
A. H.S. Putro ◽  
J.L. Lee

Abstract The beach profile survey in the intertidal zone is crucial for a temporal variability study of shoreline and beach profile change for coastal management. The combination of numerical modelling and field data has proven to be successful in identifying the primary hydrodynamic and sediment transport processes such as littoral and cross-shore drift. Those parameters are relevant to the sandbar migration process and shoreline changes. The purpose of the present study is to analyse the littoral drift that caused temporal variability shoreline change in mesotidal beach for coastal retreat mitigation. Beach profile data of Kuta Beach was analyzed by 7 years of long-term field observation data both east monsoon and west monsoon situation. The shoreline definition used mean sea level (MSL)1.3 m and high water level (HWL) 2.6 m as reference. By using the MeEPASoL program as a graphical user interface program, shoreline changes converging to an equilibrium state can be simulated by taking into account the existing breakwater. Temporal shoreline position resulting from littoral drift and beach width change from its initial position is estimated for coastal erosion analysis. The result showed that dominantly, the littoral drift pattern moved from south to north. Furthermore, this study can be used in the process of identifying the primary hydrodynamic analysis in erosion disaster management as assessment of the beach erosion.


Author(s):  
NASUHA MOHD SHAFFIE ◽  
◽  
EFFI HELMY ARIFFIN ◽  

2021 ◽  
Vol 9 (10) ◽  
pp. 1148
Author(s):  
Irene Cinelli ◽  
Giorgio Anfuso ◽  
Enrico Bartoletti ◽  
Lorenzo Rossi ◽  
Enzo Pranzini

This paper presents the history and evolution of the different projects carried out from 1999 to 2008 at Cavo beach in the Elba Island, Italy. The village of Cavo almost completely lost its beach in the 1970s due to the reduction of sedimentary input, and the backing coastal road was defended by a revetment and two detached breakwaters. Such severe erosion processes continued in the following years and impeded any possibility of beach tourist development. In 1999, a project based on the removal of existing breakwaters and beach nourishment works based on the use of gravel as borrow sediment and the construction of two short groins to maintain nourished sediment, raised environmental concern and did not find the approval of the stakeholders. They were worried about the characteristics of the sediments, i.e., waste materials from iron mining rich in red silt and clay. Such sediment fractions made the sea red during the nourishment and deposited on the Posidonia oceanica meadow in front of the beach, with a potential environmental impact. Furthermore, they cemented the gravel fraction forming a beach rock. Between 2006 and 2008, these materials were covered with better quality gravel, extending and raising the beach profile, which required the elevation and lengthening of the two existing groins. Beach evolution monitoring following the second project, based on morphological and sedimentological data acquired before, during and after the works, demonstrated the great stability of the newly created beach. The wider beach has allowed the construction of a promenade and the positioning, in summer, of small structures useful for seaside tourism, increasing the appeal of this village. Data presented in this paper shows an interesting study case, since few examples exist in international literature regarding gravel nourishment projects monitoring and evolution.


Shore & Beach ◽  
2021 ◽  
pp. 75-85
Author(s):  
Jun Cheng ◽  
Francesca Toledo Cossu ◽  
Ping Wang

Tropical Storm Eta impacted the coast of west-central Florida from 11 November to 12 November 2020 and generated high waves over elevated water levels for over 20 hours. A total of 148 beach and nearshore profiles, spaced about 300 m (984 ft) apart, were surveyed one to two weeks before and one to eight days after the storm to examine the beach changes along four barrier islands, including Sand Key, Treasure Island, Long Key, and Mullet Key. The high storm waves superimposed on elevated water level reached the toe of dunes or seawalls and caused dune erosion and overwash at various places. Throughout most of the coast, the dune, dry beach, and nearshore area was eroded and most of the sediment was deposited on the seaward slope of the nearshore bar, resulting in a roughly conserved sand volume above closure depth. The longshore variation of beach-profile volume loss demonstrates an overall southward decreasing trend, mainly due to a southward decreasing nearshore wave height as controlled by offshore bathymetry and shoreline configurations. The Storm Erosion Index (SEI) developed by Miller and Livermont (2008) captured the longshore variation of beach-profile volume loss reasonably well. The longshore variation of breaking wave height is the dominant factor controlling the longshore changes of SEI and beach erosion. Temporal variation of water level also played a significant role, while beach berm elevation was a minor factor. Although wider beaches tended to experience more volume loss from TS Eta due to the availability of sediment, they were effective in protecting the back beach and dune area from erosion. On the other hand, smaller profile-volume loss from narrow beach did not necessarily relate to less dune/ structure damage. The opposite is often true. Accurate evaluation of a storm’s severity in terms of erosion potential would benefit beach management especially under the circumstance of increasing storm activities due to climate change.


2021 ◽  
Vol 799 (1) ◽  
pp. 012005
Author(s):  
Nor Aizam Adnan ◽  
Haris Abdul Rahim ◽  
Fazly Amri Mohd ◽  
Khairul Nizam Abdul Maulud

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1526
Author(s):  
Sunghoon Hong ◽  
Seungil Baek ◽  
Yeonjoong Kim ◽  
Jooyong Lee ◽  
Adi Prasetyo ◽  
...  

Coastal resilience has received significant attention for managing beach erosion issues. We introduced flexible artificial coral reef (ACR) structures to diminish coastal erosion, but planar installation effects should be considered to evaluate the feasibility of coastline maintenance. In this study, we conducted a three-dimensional large-scale experiment to investigate the characteristics of planar installation of ACR, focusing on the wave mitigation performance, wave profile deformation with delay, nearshore current movement, deposition and erosion trends, and beach profile variation. We found that the ACR diminished the wave height by ~50% and the current intensity by ~60% compared with that of a conventional submerged breakwater made of dolos units. Using the dispersion velocity of the dye in a tracer experiment, the dispersion time of the ACR was approximately 1.67-times longer than that of the dolos and the current velocity was reduced, revealing that ACR significantly reduced structural erosion. With dolos, severe erosion of >10 cm occurred behind the structure, whereas there was only slight erosion with the ACR. Moreover, in a vertical beach-profile analysis, the ACR exhibited greater shoreline accretion than that of dolos. These results indicate the potential of ACR in improving coastal resilience.


2021 ◽  
pp. 104432
Author(s):  
Yuan Li ◽  
Chi Zhang ◽  
Dake Chen ◽  
Jinhai Zheng ◽  
Jiawen Sun ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 353
Author(s):  
Florent Birrien ◽  
Tom Baldock

An equilibrium beach profile model is developed and coupled with a parametric hydrodynamic model to provide feedback between the evolving morphology and the hydrodynamics. The model is compared to laboratory beach profiles evolving toward equilibrium conditions under constant forcing. The equilibrium model follows the classical approach but uses the bulk sediment transport as the governing model parameter. This approach is coupled with empirically derived and normalised sediment transport functions and a parametric surf zone wave transformation model. The dissipation predicted by the surf zone model controls the cross-shore position of the maxima in the sediment transport functions and hence the cross-shore evolution of the beach profile. Realistic beach profile shapes are generated for both erosive (barred) and accretive (bermed) beach profiles, and predictions of bar and berm position are satisfactory. With more complex normalised sediment transport functions, the model can be applied to conditions with a cyclical wave climate. However, the model concept is better associated with erosive wave conditions and further work is required to improve the link between the modelled dissipation and local transport for accretive conditions.


2021 ◽  
Author(s):  
Teresa Drago ◽  
Sebastião Teixeira ◽  
Marcos Rosa ◽  
Miriam Tuaty-Guerra ◽  
Maria José Gaudêncio ◽  
...  

<p>Beach nourishment is an increasingly recommended solution for reversing the erosion process that affects nowadays the coastal zone. Usually, it is used in emergency situations as a local and short-term solution or as a regional and long-term management strategy.</p><p>From April 2017 to November 2019, sediment samples and beach profile data were collected seasonally, before and after a sand nourishment (100.000m<sup>3</sup>) that increased 30m of width in Belharucas beach (south Portugal, Algarve).</p><p>The main objective of the work was to evaluate the nourishment impact in the beach ecosystem, aiming at contributing to seafloor integrity assessment, in the scope of Descriptor 6 of the Marine Strategy Framework Directive. </p><p>Methodology included grain size and macrobenthic fauna analyses in two profiles of the nourished area and another one further away, selected as a control area. Each profile was sampled at three intertidal zones: supralittoral (beach berm), mediolittoral (beach face) and infralittoral (low tide terrace).  Beach profile data were collected with the main objective of measuring the beach width and evaluate nourishment longevity.</p><p>Results show that grain size variability, higher at beach face, is dominated by local energy beach conditions rather than to changes related to the nourishment.</p><p>Morphological data shows that beach nourishment had a relatively low longevity as two years after the nourished beach present roughly the same width as priori to nourishment.</p><p>While supralittoral samples were defaunated, medio and infralittoral ones exhibited extremely low diversity. Assemblages were dominated by small-size polychaetes, bivalves and isopods. No statistically significant differences were found in assemblage composition regarding pre- and post-sand nourishment, year seasons, tidal zones and control stations.</p><p>In conclusion, Belharucas beach exhibited high resilience to the sand nourishment, preserving its morphodynamics and ecosystem conditions.</p><p> </p><p>The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL and through the strategic project UIDB/MAR/04292/2019 - MARE and ECOEXA project (MAR-01.04.02-FEAMP-0016)</p>


Sign in / Sign up

Export Citation Format

Share Document