wind input
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Keshav Raja ◽  
Maarten Buijsman ◽  
Oladeji Siyanbola ◽  
Miguel Solano ◽  
Jay Shriver ◽  
...  

<p>Wind generated near-inertial waves (NIWs) are a major source of energy for deep-ocean mixing by transmitting wind energy from the ocean surface into the interior. Recently, it has been established that the NIW energy transmission to ocean depths is significantly modulated by background mesoscale vorticity. Thus, understanding NIW energetics in the presence of mesoscale eddies on a global scale is crucial.</p><p>We study the generation, propagation and dissipation of NIWs in global 1/25<sup>o</sup> Hybrid Coordinate Ocean Model (HYCOM) simulations with realistic tidal forcing. The model has 41 layers with uniform vertical coordinates in the mixed layer and isopycnal coordinates in the ocean interior. The model is forced by 1/3hr wind from the NAVGEM atmospheric model. We analyze one month of model data for May-June 2019. The 3D HYCOM fields are projected on vertical normal modes to compute the wind input, wave kinetic energy (KE), flux divergence and dissipation per mode.</p><p>We find that the globally integrated wind input in surface near-inertial motions is 0.21 TW for the 30-day period and is consistent with previous studies. The sum of the wind input to the first 5 modes accounts to only 31% of the total wind input while the sum of the NIW kinetic energy in the first 5 modes adds up to 60% of the total NIW KE. The difference in the fraction of the total between the wind input and NIW KE (31% and 60%) suggests that a significant portion of wind-induced near-inertial motions is dissipated close to the surface without being projected onto modes. We also find that NIW horizontal fluxes diverge from areas with cyclonic vorticity and converge in areas with anticyclonic vorticity, i.e., anticyclonic eddies are a sink for NIW energy in the global ocean.</p><p>The residual NIW KE that does not project onto modes is found to be largely trapped in anticyclonic eddies. In a next step, we will study the fate of this energy, which most likely propagate downward as beam-like features with large wave numbers. We will compute the near-inertial wave energy balance for fixed subsurface layers and consider the energy exchange between these layers to understand the vertical structure of NIW energy dissipation. We find that the downward NIW radiation to the ocean interior at 500 m depth is 19% of the surface near-inertial wind input for the 30-day period.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 139
Author(s):  
Rodman R. Linn ◽  
Judith L. Winterkamp ◽  
James H. Furman ◽  
Brett Williams ◽  
J. Kevin Hiers ◽  
...  

Coupled fire-atmosphere models are increasingly being used to study low-intensity fires, such as those that are used in prescribed fire applications. Thus, the need arises to evaluate these models for their ability to accurately represent fire spread in marginal burning conditions. In this study, wind and fuel data collected during the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiments (RxCADRE) fire campaign were used to generate initial and boundary conditions for coupled fire-atmosphere simulations. We present a novel method to obtain fuels representation at the model grid scale using a combination of imagery, machine learning, and field sampling. Several methods to generate wind input conditions for the model from eight different anemometer measurements are explored. We find a strong sensitivity of fire outcomes to wind inputs. This result highlights the critical need to include variable wind fields as inputs in modeling marginal fire conditions. This work highlights the complexities of comparing physics-based model results against observations, which are more acute in marginal burning conditions, where stronger sensitivities to local variability in wind and fuels drive fire outcomes.


2021 ◽  
Vol 157 ◽  
pp. 101730
Author(s):  
Konstantinos Christakos ◽  
Jan-Victor Björkqvist ◽  
Laura Tuomi ◽  
Birgitte R. Furevik ◽  
Øyvind Breivik
Keyword(s):  

2020 ◽  
Vol 38 (3) ◽  
pp. 749-764 ◽  
Author(s):  
Hermann Lühr ◽  
Yun-Liang Zhou

Abstract. During magnetically active periods the storm-time disturbance signal on the ground commonly develops an azimuthal asymmetry. Negative deflections of the magnetic horizontal (H) component are enhanced in the 18:00 local time sector and smallest in the morning sector. This is commonly attributed to the asymmetric ring current effect. In this study we investigate the average characteristics of anti-sunward net currents that are not closing in the ionosphere. Their intensity is growing proportionally with the amount of solar wind input to the magnetosphere. There is almost twice as much current flowing across the polar region in the winter hemisphere as on the summer side. This seasonal dependence is more pronounced in the dusk sector than in the dawn sector. Event studies reveal that anti-sunward currents are closely related to the main phase of a magnetic storm. Since the asymmetry of storm-time disturbances also builds up during the main phase, we suggest a relation between these two phenomena. From a statistical study of ground-based disturbance levels during magnetically active periods, we obtain support for our suggestion. We propose a new 3D current system responsible for the zonally asymmetric storm-time disturbance signal that does not involve the ring current. The high-latitude anti-sunward currents are connected at their noon and midnight ends to field-aligned currents that lead the currents to the outer magnetosphere. The auroral net current branch on the morning side is closed along the dawn flank near the magnetopause, and the evening side currents flow along the dusk flank magnetosphere. Regardless through which loop the current is flowing, near-Earth storm-time disturbance levels will in both cases be reduced in the morning sector and enhanced in the evening.


2020 ◽  
Author(s):  
Nefeli Makrygianni ◽  
Jean R. Bidlot ◽  
Michaela Bray ◽  
Shunqi Pan

<p>For more than 30 years, many studies have been carried out to improve the understanding of the air-sea interaction and its impact on the predictions of atmospheric and the oceanic processes. It is well understood that the accuracy in predictions of the wind-driven waves is highly dependent on the source input and dissipation terms. The Wave Boundary Layer (WBL) approach for the estimation of surface stress has previously been used to improve the wind and wave simulations under extreme conditions. However, until recently the WBL was only used to determine the roughness length (z<sub>0</sub>) and drag coefficient (C<sub>d</sub>), but not to alter the wind input source function in wave models. In this study, the wave boundary layer model (WBLM) was implemented in the OpenIFS coupled model as source functions as suggested by Du et al. (2017, 2019). The new wind input and dissipation terms are then tested using numerical model simulations, with a particular focus on the contribution of the high frequency tail in the source input function.  The comparison of the results of this study with published results hints at better performance of the model on the estimation of the roughness length and drag coefficient. This should improve predictions of the significant wave height and wind speeds, especially under extreme conditions.</p><p>Corresponding Author: Nefeli Makrygianni ([email protected])</p>


2020 ◽  
Author(s):  
Hermann Lühr ◽  
Yun-Liang Zhou

Abstract. During magnetically active periods the storm-time disturbance signal on ground develops commonly an azimuthal asymmetry. Negative deflections of the magnetic horizontal (H) component are enhanced in the 18:00 local time sector and smallest in the morning sector. This is commonly attributed to the asymmetric ring current effect. In this study we are investigating the average characteristics of anti-sunward net currents that are not closing in the ionosphere. Their intensity is growing proportionally with the amount of solar wind input to the magnetosphere. There is almost twice as much current flowing in the winter hemisphere as on the summer side. This seasonal dependence is more pronounced on the dusk than on the dawn side. Event studies reveal that anti-sunward currents are closely related to the main phase of a magnetic storm. Since also the asymmetry of storm-time disturbances build up during the main phase, we suggest a relation between these two phenomena. From a statistical study of ground-based disturbance levels during magnetically active periods we obtain support for our suggestion. Observed storm-time disturbance amplitudes are clearly smaller in the summer hemisphere than in the winter part. This difference increases toward higher latitudes. We propose a new 3D current system responsible for the zonally asymmetric storm-time disturbance signal that does not involve the ring current. The high-latitude anti-sunward currents are connected at their noon and midnight ends to field-aligned currents that lead the currents to the outer magnetosphere. The net current branch on the morning side is closed along the dawn flank plasmapause, and the evening side currents along the dusk flank magnetopause. Regardless through which loop the current is flowing, near-Earth storm-time disturbance level will in both cases be reduced in the morning sector and enhanced in the evening.


Load frequency control (LFC) of an interconnected three-area power system with HVDC link under deregulated environment in presence of wind system is investigated. Integration of renewable sources in to exiting plants will affect the system frequency and hence design of a suitable controller is needed to maintain frequency within limits. Study of impact of wind penetration in to deregulated environment is a key factor. The secondary PID controller improves the overall system performance during sudden load disturbances and random variations of wind input. The optimal values of PID controllers in all three areas and pitch control in wind system are tuned by using Differential Evaluation (DE) algorithm


Sign in / Sign up

Export Citation Format

Share Document