Predictability of Particle Trajectories in the Ocean

2000 ◽  
Author(s):  
Tamay M. Oezgoekmen ◽  
Annalisa Griffa ◽  
Arthur J. Mariano
1981 ◽  
Author(s):  
Yaakov Shima ◽  
Gabor Kalman ◽  
Paul Carini

2002 ◽  
Author(s):  
Tamay M. Ozgokmen ◽  
Annalisa Griffa ◽  
Arthur J. Mariano

2001 ◽  
Author(s):  
Tamay M. Ozgokmen ◽  
Annalisa Griffa ◽  
Arthur J. Mariano

Author(s):  
Sauro Succi

The study of transport phenomena in disordered media is a subject of wide interdisciplinary concern, with many applications in fluid mechanics, condensed matter, life and environmental sciences as well. Flows through grossly irregular (porous) media is a specific fluid mechanical application of great practical value in applied science and engineering. It is arguably also one of the applications of choice of the LBE methods. The dual field–particle character of LBE shines brightly here: the particle-like nature of LBE (populations move along straight particle trajectories) permits a transparent treatment of grossly irregular geometries in terms of elementary mechanical events, such as mirror and bounce-back reflections. These assets were quickly recognized by researchers in the field, and still make of LBE (and eventually LGCA) an excellent numerical tool for flows in porous media, as it shall be discussed in this Chapter.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1691 ◽  
Author(s):  
Zhenzhen Chen ◽  
Donghui Wen ◽  
Jianfei Lu ◽  
Jie Yang ◽  
Huan Qi

For the traditional single-side planetary abrasive lapping process particle trajectories passing over the target surface are found to be periodically superposed due to the rational rotation speed ratio of the lapping plate to workpiece that could affect the material removal uniformity and hence its surface quality. This paper reports on a novel driving system design with combination of the tapered roller and contact roller to realize the irrational rotation speed ratio of the lapping plate to workpiece in the single-side planetary abrasive lapping process for the improvement of surface quality. Both of the numerical and experimental investigations have been conducted to evaluate the abrasive lapping performance of the novel driving system. It has been found from the numerical simulation that particle trajectories would theoretically cover the whole target surface if the lapping time is long enough due to their non-periodic characteristics, which can guarantee the uniformity of material removal from the surface of workpiece with relatively high surface quality. The encouraging experimental results underline the potential of the novel driving system design in the application of the single-side planetary abrasive lapping for the improvement of the surface quality in terms of surface roughness and material removal uniformity.


2019 ◽  
Vol 867 ◽  
pp. 438-481 ◽  
Author(s):  
R. Watteaux ◽  
G. Sardina ◽  
L. Brandt ◽  
D. Iudicone

We present a study of Lagrangian intermittency and its characteristic time scales. Using the concepts of flying and diving residence times above and below a given threshold in the magnitude of turbulence quantities, we infer the time spectra of the Lagrangian temporal fluctuations of dissipation, acceleration and enstrophy by means of a direct numerical simulation in homogeneous and isotropic turbulence. We then relate these time scales, first, to the presence of extreme events in turbulence and, second, to the local flow characteristics. Analyses confirm the existence in turbulent quantities of holes mirroring bursts, both of which are at the core of what constitutes Lagrangian intermittency. It is shown that holes are associated with quiescent laminar regions of the flow. Moreover, Lagrangian holes occur over few Kolmogorov time scales while Lagrangian bursts happen over longer periods scaling with the global decorrelation time scale, hence showing that loss of the history of the turbulence quantities along particle trajectories in turbulence is not continuous. Such a characteristic partially explains why current Lagrangian stochastic models fail at reproducing our results. More generally, the Lagrangian dataset of residence times shown here represents another manner for qualifying the accuracy of models. We also deliver a theoretical approximation of mean residence times, which highlights the importance of the correlation between turbulence quantities and their time derivatives in setting temporal statistics. Finally, whether in a hole or a burst, the straining structure along particle trajectories always evolves self-similarly (in a statistical sense) from shearless two-dimensional to shear bi-axial configurations. We speculate that this latter configuration represents the optimum manner to dissipate locally the available energy.


2019 ◽  
Vol 35 (9) ◽  
pp. 685-705 ◽  
Author(s):  
O. Shukron ◽  
A. Seeber ◽  
A. Amitai ◽  
D. Holcman

Sign in / Sign up

Export Citation Format

Share Document