Turbulence and Internal Tides on the Continental Slope

2003 ◽  
Author(s):  
Eric Kunze
2007 ◽  
Vol 37 (11) ◽  
pp. 2740-2763 ◽  
Author(s):  
Sybren Drijfhout ◽  
Leo R. M. Maas

Abstract The generation and propagation of internal tides has been studied with an isopycnic three-dimensional ocean model. The response of a uniformly stratified sea in a channel, which is forced by a barotropic tide on its open boundary, is considered. The tide progresses into the channel and forces internal tides over a continental slope at the other end. The channel has a length of 1200 km and a width of 191.25 km. The bottom profile has been varied. In a series of four experiments it is shown how the cross-channel geometry affects the propagation and trapping of internal tides, and the penetration scale of wave energy, away from the continental slope, is discussed. In particular it is found that a cross-channel bottom slope constrains the penetration of the internal tidal energy. Most internal waves refract toward a cross-channel plane where they are trapped. The exception is formed by edge waves that carry part of the energy away from the continental slope. In the case of rotation near the continental slope, the Poincaré waves that arise in the absence of a cross-channel slope no longer bear the characteristics of the wave attractor predicted by 2D theory, but are almost completely arrested, while the right-bound Kelvin wave preserves the 2D attractor in the cross-channel plane, which is present in the nonrotating case. The reflected, barotropic right-bound Kelvin wave acts as a secondary internal wave generator along the cross-channel slope.


2010 ◽  
Vol 40 (6) ◽  
pp. 1338-1355 ◽  
Author(s):  
Matthew H. Alford ◽  
Ren-Chieh Lien ◽  
Harper Simmons ◽  
Jody Klymak ◽  
Steve Ramp ◽  
...  

Abstract In the South China Sea (SCS), 14 nonlinear internal waves are detected as they transit a synchronous array of 10 moorings spanning the waves’ generation site at Luzon Strait, through the deep basin, and onto the upper continental slope 560 km to the west. Their arrival time, speed, width, energy, amplitude, and number of trailing waves are monitored. Waves occur twice daily in a particular pattern where larger, narrower “A” waves alternate with wider, smaller “B” waves. Waves begin as broad internal tides close to Luzon Strait’s two ridges, steepening to O(3–10 km) wide in the deep basin and O(200–300 m) on the upper slope. Nearly all waves eventually develop wave trains, with larger–steeper waves developing them earlier and in greater numbers. The B waves in the deep basin begin at a mean speed of ≈5% greater than the linear mode-1 phase speed for semidiurnal internal waves (computed using climatological and in situ stratification). The A waves travel ≈5%–10% faster than B waves until they reach the continental slope, presumably because of their greater amplitude. On the upper continental slope, all waves speed up relative to linear values, but B waves now travel 8%–12% faster than A waves, in spite of being smaller. Solutions of the Taylor–Goldstein equation with observed currents demonstrate that the B waves’ faster speed is a result of modulation of the background currents by an energetic diurnal internal tide on the upper slope. Attempts to ascertain the phase of the barotropic tide at which the waves were generated yielded inconsistent results, possibly partly because of contamination at the easternmost mooring by eastward signals generated at Luzon Strait’s western ridge. These results present a coherent picture of the transbasin evolution of the waves but underscore the need to better understand their generation, the nature of their nonlinearity, and propagation through a time-variable background flow, which includes the internal tides.


2016 ◽  
Vol 75 (sp1) ◽  
pp. 1387-1391
Author(s):  
Hee-Yeol Lee ◽  
Jae-Hun Park ◽  
Chanhyung Jeon ◽  
Seongbong Seo ◽  
Dong Guk Kim ◽  
...  

2004 ◽  
Vol 92 (2) ◽  
pp. 130 ◽  
Author(s):  
David Cacchione ◽  
Lincoln Pratson

2011 ◽  
Vol 41 (9) ◽  
pp. 1772-1794 ◽  
Author(s):  
Kim I. Martini ◽  
Matthew H. Alford ◽  
Eric Kunze ◽  
Samuel M. Kelly ◽  
Jonathan D. Nash

Abstract A complex superposition of locally forced and shoaling remotely generated semidiurnal internal tides occurs on the Oregon continental slope. Presented here are observations from a zonal line of five profiling moorings deployed across the continental slope from 500 to 3000 m, a 24-h expendable current profiler (XCP) survey, and five 15–48-h lowered ADCP (LADCP)/CTD stations. The 40-day moored deployment spans three spring and two neap tides, during which the proportions of the locally and remotely forced internal tides vary. Baroclinic signals are strong throughout spring and neap tides, with 4–5-day-long bursts of strong cross-slope baroclinic semidiurnal velocity and vertical displacement . Energy fluxes exhibit complex spatial and temporal patterns throughout both tidal periods. During spring tides, local barotropic forcing is strongest and energy flux over the slope is predominantly offshore (westward). During neap tides, shoaling remotely generated internal tides dominate and energy flux is predominantly onshore (eastward). Shoaling internal tides do not exhibit a strong spring–neap cycle and are also observed during the first spring tide, indicating that they originate from multiple sources. The bulk of the remotely generated internal tide is hypothesized to be generated from south of the array (e.g., Mendocino Escarpment), because energy fluxes at the deep mooring 100 km offshore are always directed northward. However, fluxes on the slope suggest that the northbound internal tide is turned onshore, most likely by reflection from large-scale bathymetry. This is verified with a simple three-dimensional model of mode-1 internal tides propagating obliquely onto a near-critical slope, whose output conforms fairly well to observations, in spite of its simplicity.


Sign in / Sign up

Export Citation Format

Share Document