Modeling the Impact of Seascape Evolution on the Seismic Response of Shelf and Slope Strata

2003 ◽  
Author(s):  
Lincoln F. Pratson
Keyword(s):  
2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


2013 ◽  
Vol 671-674 ◽  
pp. 1399-1402
Author(s):  
Ying Sun ◽  
Jian Gang Sun ◽  
Li Fu Cui

To study the impact of floating roof on seismic response of vertical storage tank structure system subjected to seismic excitation, select 150000m3 storage tanks as research object, and the finite element analysis model of storage tanks with and without floating roof were established respectively. The seismic response of these two types of structure in different site conditions and seismic intensity were calculated and the numerical solutions were compared. The results show that floating roof has little impact on base shear and base moment in different site conditions and seismic intensity. Floating roof can effectively reduce the sloshing wave height. The influence of floating roof on dynamic fluid pressure decreases with the increase of seismic intensity, which is less affected by ground conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wei Liu ◽  
Chunjie Huang ◽  
Yunchang Wang ◽  
Peixin Shi

Buried pipelines serve as a critical component of lifeline systems, such as water and gas supply. They are interconnected to form a network to transport utilities. The connections change the geometry and stiffness of pipelines and impact the seismic response of the pipelines. This paper investigates the influence of connections on the seismic response of buried continuous steel trunk lines. A finite element model is introduced for analyzing the seismic response of buried pipeline networks. The seismic response of continuous steel pipelines with different connections, including cruciform and T-, K-, L-, and Y-shaped, is analyzed. The impact of site class, pipe diameter, branch angle, and angle of wave incidence on the response of pipe connections is explored. An influence coefficient defined to characterize the strain amplification at the connections is proposed for different forms of connections. Engineering measures to reduce the strain amplification at connections are suggested.


1993 ◽  
Vol 20 (4) ◽  
pp. 672-687 ◽  
Author(s):  
A. K. Jain ◽  
R. G. Redwood ◽  
Feng Lu

Concentrically braced steel frames are one of the most commonly used structural systems because of their structural efficiency, simplicity to analyze and design, and ease of construction and repair. Canadian design codes provide specifications for their design under seismic loading based on the large amount of knowledge related to their seismic response accumulated over the past two decades. This paper examines the impact of a dual system with a moment resisting frame acting in parallel with the concentrically braced frame. Four different frames were designed in accordance with the National Building Code of Canada and CSA-S16.1-M89, and their inelastic responses are studied under the action of both monotonically increasing load and seismic load. The relative strengths and stiffnesses of the frames comprising the dual systems were varied. The ductility demands on members, and overall building deflections and storey drifts, were examined under the action of ten earthquake records. It is concluded that improved performance such as reduced ductility demand and improved uniformity of the distribution of yield throughout the structure can be achieved. However, the stiffness and strength in the moment resisting frame necessary to provide marked improvement must be a significant proportion of those of the braced frame. Key words: structural engineering, earthquakes, inelastic analysis, concentric bracing, dual system, steel, buckling.


2020 ◽  
Vol 11 (2) ◽  
pp. 72-90
Author(s):  
Radhwane Boulkhiout ◽  
Salah Messast

The present study covers the influence of soil-structure interaction on the response of structures and civil engineering constructions under seismic excitation. The response of the structures being studied was evaluated, first, using a perfectly embedded structure at the base. Then, using two different models to model soil-structure contact, the finite element model and a rheological model (springs and dampers) in order to illustrate the impact of soil type behavior on structure response was considered based on periods, displacements, and stresses. On the other hand, the effect of superstructure type and its stiffness on the seismic response will be determined, first, using a reinforced concrete frame with shear walls and, second, using a girder bridge. Finally, in each model mentioned above, a parametric study was conducted to better understand the dynamic behavior of the analyzed structure. As for modelling by finite element method, the study was achieved using SAP2000 code.


Sign in / Sign up

Export Citation Format

Share Document