Role of Tidal Forcing in Determining the Internal Wave Spectrum in the Littoral Ocean

1998 ◽  
Author(s):  
Jeffrey D. Paduan ◽  
Leslie K. Rosenfeld
2019 ◽  
Vol 46 (24) ◽  
pp. 14644-14652 ◽  
Author(s):  
Zhiwu Chen ◽  
Shaomin Chen ◽  
Zhiyu Liu ◽  
Jiexin Xu ◽  
Jieshuo Xie ◽  
...  

1975 ◽  
Vol 67 (4) ◽  
pp. 667-687 ◽  
Author(s):  
A. D. McEwan ◽  
R. M. Robinson

A continuously stratified fluid, when subjected to a weak periodic horizontal acceleration, is shown to be susceptible to a form of parametric instability whose time dependence is described, in its simplest form, by the Mathieu equation. Such an acceleration could be imposed by a large-scale internal wave field. The growth rates of small-scale unstable modes may readily be determined as functions of the forcing-acceleration amplitude and frequency. If any such mode has a natural frequency near to half the forcing frequency, the forcing amplitude required for instability may be limited in smallness only by internal viscous dissipation. Greater amplitudes are required when boundaries constrain the form of the modes, but for a given bounding geometry the most unstable mode and its critical forcing amplitude can be defined.An experiment designed to isolate the instability precisely confirms theoretical predictions, and evidence is given from previous experiments which suggest that its appearance can be the penultimate stage before the traumatic distortion of continuous stratifications under internal wave action.A preliminary calculation, using the Garrett & Munk (197%) oceanic internal wave spectrum, indicates that parametric instability could occur in the ocean at scales down to that of the finest observed microstructure, and may therefore have a significant role to play in its formation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Sarfraz ◽  
Gohar Abbas ◽  
Hashim Farooq ◽  
I. Zeba

Abstract A sequence of in situ measurements points the presence of non-thermal species in the profile of particle distributions. This study highlights the role of such energetic electrons on the wave-spectrum. Using Vlasov–Maxwell’s model, the dispersion relations of the parallel propagating modes along with the space scale of damping are discussed using non-relativistic bi-Maxwellian and bi-Kappa distribution functions under the weak field approximation, i.e., ω − k . v > Ω 0 $\left\vert \omega -\mathbf{k}.\mathbf{v}\right\vert { >}{{\Omega}}_{0}$ . Power series and asymptotic expansions of plasma dispersion functions are performed to derive the modes and spatial damping of waves, respectively. The role of these highly energetic electrons is illustrated on real frequency and anomalous damping of R and L-modes which is in fact controlled by the parameter κ in the dispersion. Further, we uncovered the effect of external magnetic field and thermal anisotropy on such spatial attenuation. In global perspective of the kinetic model, it may be another step.


2020 ◽  
Vol 8 (2) ◽  
pp. 63
Author(s):  
Nils B. Kerpen ◽  
Karl-Friedrich Daemrich ◽  
Oliver Lojek ◽  
Torsten Schlurmann

The wave overtopping discharge at coastal defense structures is directly linked to the freeboard height. By means of physical modelling, experiments on wave overtopping volumes at sloped coastal structures are customarily determined for constant water levels and static wave steepness conditions (e.g., specific wave spectrum). These experiments are the basis for the formulation of empirically derived and widely acknowledged wave overtopping estimations for practical design purposes. By analysis and laboratory reproduction of typical features from exemplarily regarded real storm surge time series in German coastal waters, the role of non-stationary water level and wave steepness were analyzed and adjusted in experiments. The robustness of wave overtopping estimation formulae (i.e., the capabilities and limitations of such a static projection of dynamic boundary conditions) are outlined. Therefore, the classic static approach is contrasted with data stemming from tests in which both water level and wave steepness were dynamically altered in representative arrangements. The analysis reveals that mean overtopping discharges for simple sloping structures in an almost deep water environment could be robustly estimated for dynamic water level changes by means of the present design formulae. In contrast, the role of dynamic changes of the wave steepness led to a substantial discrepancy of overtopping volumes by a factor of two. This finding opens new discussion on methodology and criteria design of coastal protection infrastructure under dynamic exposure to storm surges and in lieu of alterations stemming from projected sea level rise.


Sign in / Sign up

Export Citation Format

Share Document