scholarly journals Eight New Somatic Hybrid Citrus Rootstocks with Potential for Improved Disease Resistance

HortScience ◽  
1992 ◽  
Vol 27 (9) ◽  
pp. 1033-1036 ◽  
Author(s):  
Eliezer S. Louzada ◽  
Jude W. Grosseti ◽  
Frederick G. Gmitter ◽  
Beatriz Nielsen ◽  
J.L. Chandler ◽  
...  

Protoplast culture following polyethylene glycol-induced fusion resulted in the regeneration of vigorous tetraploid somatic hybrid plants from eight complementary parental rootstock combinations: Citrus reticulata Blanco (Cleopatra mandarin) + C. aurantium L. (sour orange), C. reticulata (Cleopatra mandarin) + C. jambhiri Lush (rough lemon), C. reticulata (Cleopatra mandarin) + C. volkameriana Ten. & Pasq. (Volkamer lemon), C. reticulata (Cleopatra mandarin) + C. limonia Osb. (Rang-pur), C. sinensis (L.) Osb. (Hamlin sweet orange) + C. limonia (Rangpur), C. aurantium (sour orange) + C. volkameriana (Volkamer lemon) zygotic seedling, C. auruntium hybrid (Smooth Flat Seville) + C. jambhiri (rough lemon), and C. sinensis (Valencia sweet orange) + Carrizo citrange [C. paradisi Macf. × Poncirus trifoliata (L.) Raf.]. Diploid plants were regenerated from nonfused callus-derived protoplasts of Valencia sweet orange and Smooth Flat Seville and from nonfused leaf protoplasts of sour orange, Rangpur, rough lemon, and Volkamer lemon. Regenerated plants were classified according to leaf morphology, chromosome number, and leaf isozyme profiles. All somatic hybrid plants were tetraploid (2n = 4× = 36). One autotetraploid plant of the Volkamer lemon zygotic was recovered, apparently resulting from a homokaryotic fusion. These eight new citrus somatic hybrids have been propagated and entered into field trials.

HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 812-813 ◽  
Author(s):  
Jude W. Grosser ◽  
Frederick G. Gmitter ◽  
J.L. Chandler ◽  
Eliezer S. Louzada

Protoplasm culture following polyethylene glycol-induced fusion resulted in the regeneration of tetraploid somatic hybrid plants from the following attempted parental combinations: Cleopatra mandarin (Citrus reticulata Blanco) + Argentine trifoliate orange [Poncirus trifoliata (L.) Raf.]; `Succari' sweet orange [C. sinensis (L.) Osb.] + Argentine trifoliate orange; sour orange (C. aurantium L.) + Flying Dragon trifoliate orange (P. trifolita); sour orange + Rangpur (C. limonia Osb.); and Milam lemon (purported sexual hybrid of C. jambhiri Lush × C. sinensis) + Sun Chu Sha mandarin (C. reticulate Blanco). Protoplasm isolation, fusion, and culture were conducted according to previously published methods. Regenerated plants were classified according to leaf morphology, chromosome number, and peroxidase, phosphoglucomutase, and phosphoglucose isomerase leaf isozyme profiles. All of the somatic hybrid plants were tetraploid, as expected (2n = 4x = 36), and all five selections have been propagated and entered into commercial citrus rootstock trials.


1992 ◽  
Vol 117 (1) ◽  
pp. 169-173 ◽  
Author(s):  
Jude W. Grosser ◽  
Frederick G. Gmitter ◽  
Franca Sesto ◽  
Xiu Xin Deng ◽  
J.L. Chandler

Protoplasm culture following polyethylene glycol (PEG) -induced fusion resulted in the regeneration of somatic hybrid plants from the following six parental combinations: Citrus sinermis (L.) Osbeck cv. Hamlin + Severinia buxifolia (Poir.) Tenore (Chinese box-orange); C. reticulate Blanco cv. Cleopatra + Poncirus trifoliata (L.) Raf. cv. Flying Dragon; C. reticulate cv. Cleopatra + Swingle citrumelo (C. paradisi Macf. × P. trifoliata); C. sinensis cv. Hamlin + C. jambhiri cv. Rough lemon; C. sinensis cv. Valencia + C. jambhiri cv. Rough lemon; and C. paradisi cv. Thompson + `Murcott' tangor (purported hybrid of C. reticulate × C. sinensis). Diploid plants were regenerated from nonfused embryogenic culture-derived protoplasts of `Cleopatra' mandarin and `Hamlin' and `Valencia' sweet orange, and from nonfused leaf-derived protoplasts of Rough lemon and `Mnrcott'. Regenerated plants were classified according to leaf morphology, chromosome number, and isozyme analyses. All of the somatic hybrids reported herein are tetraploid (2n = 4x = 36), with the exception of the `Hamlin' + S. buxifolia hybrid, which was unexpectedly found to have a chromosome number of 2n = 27. These six new somatic hybrids have potential in citrus scion and rootstock improvement for commercial use.


Author(s):  
Mehmet Yaman ◽  
Hasan Pınar ◽  
Ubeyit Seday ◽  
Duygu Altınöz ◽  
Aydın Uzun ◽  
...  

Just because of geographical spread, citrus species generally grow in places sensitive to salinity. Testing methods have a significant role in breeding and cultivar development programs. This study was conducted to investigate in vitro salt response of Cleopatra mandarin (Citrus reshni Tan.), sour orange (Citrus aurantium L.), rough lemon (Citrus jambhiri Lush.), Volkamer lemon (Citrus volkameriana Tan & Pasq.), Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osbeck) and trifoliate orange (Poncirus trifoliata Raf.) rootstocks at different NaCl concentrations. Seeds were germinated in MS medium with 0, 45, 90 and 135 mM NaCl concentrations. In general, the greatest germination rates in all salt concentrations in Volkamer lemon and sour orange rootstocks and the lowest values were observed in rough lemon and trifoliate orange rootstocks. Present findings revealed that in vitro conditions could reliably be used in salt tolerance tests of citrus rootstocks.


2018 ◽  
Vol 28 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Ed Stover ◽  
David G. Hall ◽  
Jude Grosser ◽  
Barrett Gruber ◽  
Gloria A. Moore

The primary objective of this experiment was to determine if the selection of rootstock (Citrus and hybrids) could enhance the development of huanglongbing (HLB)-related symptoms associated with the pathogen Candidatus Liberibacter asiaticus (CLas) in sweet orange (Citrus sinensis). If so, then it may permit more rapid identification of HLB-susceptible compared to HLB-resistant scion types. The secondary objective was to assess the impact of different rootstocks on plant growth parameters and health to determine if trees on any rootstocks displayed reduced sensitivity to HLB-influenced growth restriction. ‘Valencia’ sweet orange was budded on each of the following eight genotypes: Carrizo (C. sinensis × Poncirus trifoliata); Cleopatra (C. reshni); Green-7 {a complex allotetraploid from somatic hybrids [C. clementina × (C. paradisi × C. reticulata) + C. grandis] × [(C. aurantium + (C. sinensis × P. trifoliata)]}; UFR-2 (a complex allotetraploid from somatic hybrids {[C. clementina × (C. paradisi × C. reticulata)] + C. grandis} × (C. reticulata + P. trifoliata)); UFR-4 (same pedigree as UFR-2); rough lemon (C. jambhiri); sour orange (C. aurantium); and US-897 (C. reticulata × P. trifoliata). Half of the trees on each rootstock were bud-inoculated with CLas and half were inoculated with the asian citrus psyllid [ACP (Diaphorina citri)], which is the CLas vector. During both experiments, no rootstock conferred significantly greater HLB symptom severity compared to trees on Carrizo; however, trees on several rootstocks had reduced HLB severity compared to those on Carrizo. Regarding the bud-inoculated trees after 3 years, trees on UFR-4 displayed greater overall health than trees on Carrizo, Green-7, sour orange, and US897, and trees on UFR-4 had a higher percentage of plants with leaf cycle threshold (Ct) values >36 compared with trees on Cleopatra and rough lemon (62 vs. 26-29 respectively). Regarding the ACP-inoculated trees after 3 years, trees on UFR-4 had better overall health than trees on Carrizo, rough lemon, and US-897, and trees on sour orange had a higher percentage of plants with leaf Ct values greater than 36 only compared to Cleopatra and US-897. The percentage increase in the trunk diameter per month over the course of each entire experiment was significantly greater for UFR-2 in both trials than all rootstocks except UFR-4. Only root CLas titers were sometimes significantly higher for trees on other rootstocks compared to those on Carrizo. Although no rootstock provided acceleration of HLB symptom development compared with Carrizo, some rootstocks conferred significantly greater health compared to Carrizo. However, it is uncertain whether the modest differences in health and growth observed in these greenhouse trials would translate to economic benefits in the field.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1060-1061 ◽  
Author(s):  
J.W. Grosser ◽  
J. Jiang ◽  
E.S. Louzada ◽  
J.L. Chandler ◽  
F.G. Gmitter

Production of tetraploid somatic hybrids that combine complementary diploid rootstock germplasm via protoplast fusion has become a practical strategy for citrus rootstock improvement, with the overall objective of packaging necessary disease and pest resistance into horticulturally desirable, widely adapted rootstocks. Citrus somatic hybridization techniques have been advanced to the point where numerous somatic hybrid rootstocks can now be produced and propagated for evaluation on a timely basis. Herein we report the production of 11 new somatic hybrid rootstock candidates from 12 different parents, including Milam lemon hybrid (Citrus jambhiri Lush.), Cleopatra mandarin (C. reticulata Blanco), sour orange (C. aurantium L.), `Succari' sweet orange [C. sinensis (L.) Osbeck], `Redblush' grapefruit (C. paradisi Macf.), `Nova' tangelo [C. reticulata × (C. paradisi × C. reticulata)], `Kinkoji' (C. obovoidea Hort. Ex Takahashi), Swingle citrumelo [C. paradisi × Poncirus trifoliata (L.) Raf.], Carrizo citrange (C. sinensis × P. trifoliata), rough lemon 8166 (C. jambhiri), and Palestine sweet lime (C. limettoides Tan.). All hybrids were confirmed by cytological and VNTR-PCR analyses, and have been propagated, budded with a commercial scion, and field-planted for performance evaluation.


2000 ◽  
Vol 23 (3) ◽  
pp. 661-665 ◽  
Author(s):  
Fernanda Januzzi Mendes-da-Glória ◽  
Francisco de Assis Alves Mourão Filho ◽  
Luis Eduardo Aranha Camargo ◽  
Beatriz Madalena Januzzi Mendes

Protoplast culture following polyethylene glycol-induced fusion resulted in the regeneration of somatic hybrid plants between Caipira sweet orange (Citrus sinensis L. Osbeck) and Rangpur lime (C. limonia L. Osbeck). The plants were confirmed as somatic hybrids by leaf morphology, chromosome number and RAPD profile. All regenerated plants were tetraploid (2n = 4x = 36), with intermediate leaf morphology and complementary RAPD banding profile of both parents. This combination may be useful as a rootstock for the citrus industry in Southeastern Brazil since this somatic hybrid could combine the drought tolerance and vigor of Rangpur lime with the blight tolerance of Caipira sweet orange.


1971 ◽  
Vol 11 (48) ◽  
pp. 123 ◽  
Author(s):  
CR Millikan ◽  
EN Bjarnason ◽  
BC Hanger

Five scions and ten rootstocks were tested in an eight-year trial at Irymple, near Mildura, Victoria. The scions were two old-line Lisbons, a nucellar Eureka, and two old-line Eurekas. Cumulative yields averaged for the ten rootstocks and expressed as a percentage of the best scion were : Rix Lisbon 100, Doncaster Lisbon 99, Frost Nucellar Eureka 95, Rodwell Eureka 89, and Villa Franca Eureka 73. The rootstocks, with their percentage yields in parentheses, were : Rough lemon (100), Cavanagh sweet orange (90), Symons sweet orange (84), Marsh grapefruit (73, Cox sweet orange (74), Cleopatra mandarin (72). Seville sour orange (721, Sampson tangelo (69), Emperor mandarin (69), and Carrizo citrange (30). The poor performance of Carrizo citrange is discussed in terms of virus infection and incompatibility. The incidence and importance of scion overgrowth is also reported and discussed.


HortScience ◽  
1992 ◽  
Vol 27 (5) ◽  
pp. 445-447 ◽  
Author(s):  
N. Tusa ◽  
J.W. Grosser ◽  
F.G. Gmitter ◽  
E.S. Louzada

Allotetraploid somatic hybrid plants of `Hamlin' sweet orange (Citrus sinensis L. Osbeck) + `Femminello' lemon (C. limon L. Burm. f.), and Milam lemon (purported hybrid of C. jambhiri Lush) + `Femminello' lemon were regenerated via somatic embryogenesis following protoplast fusion. `Hamlin' and Milam protoplasts were isolated from undeveloped ovule-derived embryogenic callus cultures and fused using a polyethylene glycol method with seedling leaf-derived protoplasts of `Femminello' lemon. Somatic hybrids were identified on the basis of leaf morphology, root-tip cell chromosome number, and electrophoretic analyses of phosphoglucose isomerase, phosphoglucose mutase, and 6-phosphogluconate dehydrogenase leaf isozymes. The somatic hybrids will be used in interploid crosses with lemon in an effort to generate seedless triploid lemon types with improved tolerance to mal secco disease.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 482f-482
Author(s):  
Francisco A. A. Mourão Fo ◽  
Jude W. Grosser ◽  
Frederick G. Gmitter

Protoplast culture following polyethylene glycol (PEG)-induced fusion resulted in the regeneration of somatic hybrid plants from the following combinations: `Succari' sweet orange (C. sinensis L. Osbeck) + `Ponkan' mandarin (C. reticulata Blanco), `Succari' sweet orange + `Dancy' mandarin (C. reticulata), `Succari' sweet orange + `Page' tangelo [a sexual hybrid between `Minneola' tangelo (C. reticulata × C. paradisi Mcf.) × `Clementine' mandarin (C. reticulata)], `Valencia' sweet orange (C. sinensis) + `Page' tangelo. `Succari' and `Valencia' protoplasts were isolated -from ovule-derived embryogenic cell suspension cultures and from seedling leaves for the other parents. Somatic hybrid plants were Identified on the basis of leaf morphology and electrophoretic analysis of isozyme banding patterns. Root tip cell chromosome counting is being performed on all plants. Other putative somatic hybrids Include: `Succari' sweet orange + `Minneola' tangelo; `Succari' sweet orange + `Murcott' tangos (C. sinensis × C. reticulata); `Valencia' sweet orange + `Murcott' tangor; and `Valencia' sweet orange + `Dancy' mandarin. These plants may have direct cultivar potential, but there primary use will be for interploid hybridization with selected monoembryonic scions to produce improved seedless triploids.


HortScience ◽  
1992 ◽  
Vol 27 (10) ◽  
pp. 1125-1127 ◽  
Author(s):  
Jude W. Grosser ◽  
Frederick G. Gmitter ◽  
E.S. Louzada ◽  
J.L. Chandler

Allotetraploid somatic hybrid plants of `Nova' tangelo [a sexual hybrid of `Clementine mandarin (C. reticulata Blanco) × `Orlando' tangelo (C. reticulata × C. paradisi Macf.)] + `Succari' sweet orange (C. sinensis L. Osbeck), and `Hamlin' sweet orange (C. sinensis L. Osbeck) + `Dancy' tangerine (C. reticulata) were regenerated following protoplast fusion. `Nova' and `Hamlin' protoplasts were isolated from ovule-derived embryogenic callus and suspension cultures, respectively, and fused using a polyethylene glycol method with seedling leaf-derived protoplasts of `Succari' and `Dancy', respectively. Plants were regenerated via somatic embryogenesis, and somatic hybrids were identified on the basis of leaf morphology, root-tip cell chromosome number, and electrophoretic analysis of peroxidase and phosphoglucose mutase isozyme banding patterns. Diploid plants were regenerated from unfused protoplasts of `Hamlin', `Nova', and `Succari'. Tetraploid plants of `Hamlin' and `Succari' were also recovered, apparently resulting from homokaryotic fusions. No `Dancy' plants were recovered. The somatic hybrid and autotetraploid plants can be used for interploid hybridization with selected monoembryonic scions to generate improved seedless triploid tangor/tangelo cultivars. The lack of suitable tetraploid breeding parents has previously inhibited the development of quality seedless cultivars by this method.


Sign in / Sign up

Export Citation Format

Share Document