swingle citrumelo
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Aparecida da Cruz ◽  
Carmen Silvia Vieira Janeiro Neves ◽  
Deived Uilian de Carvalho ◽  
Ronan Carlos Colombo ◽  
Jinhe Bai ◽  
...  

Rootstocks modulate several characteristics of citrus trees, including vegetative growth, fruit yield and quality, and resistance or tolerance to pests, diseases, soil drought, and salinity, among other factors. There is a shortage of scion and rootstock cultivars among the combinations planted in Brazil. “Ponkan” mandarin and “Murcott” tangor grafted on “Rangpur” lime comprise the majority of the commercial mandarin orchards in Brazil. This low genetic diversity of citrus orchards can favor pest and disease outbreaks. This study aimed to evaluate the agronomic performance, Huanglongbing (HLB) tolerance, and fruit quality of “Emperor” mandarin on five different rootstocks for nine cropping seasons under the subtropical soil-climate conditions of the North region of the state of Paraná, Brazil. The experimental design was a randomized block, with six replications, two trees per block, and five rootstocks, including “Rangpur” lime, “Cleopatra,” and “Sunki” mandarins, “Swingle” citrumelo, and “Fepagro C-13” citrange. The evaluations included tree growth, yield performance, fruit quality, and HLB disease incidence. “Emperor” mandarin trees grafted on “Rangpur” lime and “Swingle” citrumelo had early fruiting and high yield efficiency. “Rangpur” lime also induced the lowest tree growth, but low fruit quality. Trees on “Swingle” citrumelo and “Fepagro C-13” citrange showed low scion and rootstock affinity and produced fruits with high total soluble solids (TSS), with a lower number of seeds for those from trees on “Fepagro C-13” citrange. “Cleopatra” and “Sunki” mandarins induced higher juice content, while fruits from trees on “Cleopatra” also had higher TSS/titratable acidity (TA) ratio. “Emperor” mandarin trees were susceptible to HLB regardless of the rootstocks. Overall, “Cleopatra” and “Sunki” mandarins, “Swingle” citrumelo, and “Fepagro C-13” are more suitable rootstocks for “Emperor” mandarin under Brazilian subtropical conditions than “Rangpur” lime.


Nativa ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 500-507
Author(s):  
Érica Maria Sauer Liberato ◽  
Sarita Leonel ◽  
Jackson Mirellys Azevedo Souza ◽  
Gabriel Maluf Napoleão

The length of citrus seedling development is determined by several factors, including the physical and chemical qualities of the substrate, which affect rootstock growth and, as a result, the quality of field seedlings. The purpose of this study was to see how the ‘Swingle’ citrumelo rootstock developed with different substrate formulations. The experiment was carried out in a seedling nursery from seeding to grafting, and six treatments were carried out, as follows: 60% peat moss, 30% fine grade horticultural vermiculite, 10% rice hulls (1); 60% peat moss, 30% fine grade horticultural vermiculite, 10% rice hulls (2); 50% peat moss, 30% fine grade horticultural vermiculite, 20% rice hulls (3); 50% peat moss, 30% fine grade horticultural vermiculite, 20% rice hulls (4); 50% peat moss, 20% fine grade horticultural vermiculite, 30% rice hulls (5); 50% peat moss, 20% fine grade horticultural vermiculite, 30% rice hulls (6). In addition, the experiment was divided into two stages: seeding (stage 1) and seedling nursery (stage 2). In a completely randomized design, the experiment has six treatments, four replications, and 51 plants per plot. When container transplanting was performed, the emergence percentage of seedlings was determined; thus, eight plants per plot were examined. For the second stage, was used a completely randomized design with 6 substrate formulations, 4 replications, and 20 seedlings per plot. Stem height, stem diameter, leaf number, area meter, root dry matter, leaf and stem dry matter, and quality index were measured on seedlings every 28 days. All substrate formulations improved seedling development until grafting, except for the 30% rice hulls, which hampered seedling development in ‘Swingle' citrumelo.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2533
Author(s):  
Eduardo Augusto Girardi ◽  
Antonio Juliano Ayres ◽  
Luiz Fernando Girotto ◽  
Leandro Peña

Brazil is the largest producer of sweet orange and its juice in the world. Extensive cultivated area is located under an Aw climate in the North–Northwest of the state of São Paulo and the Triângulo of Minas Gerais state, being subjected to severe drought events. Although 56% of the orchards are irrigated in these regions, there is a need for drought tolerant rootstocks as an alternative to traditional genotypes such as Rangpur lime and Volkamer lemon, which are susceptible to the endemic citrus sudden death disease (CSD). In this sense, the tree size and production of Valencia sweet orange grafted onto 23 rootstock genotypes were evaluated over a ten-year period in rainfed cultivation at 7.0 m × 3.0 m spacing. Most evaluated types resulted from the cross of Poncirus trifoliata with Citrus, but two interspecific hybrids of Citrus (Sunki mandarin × Rangpur lime hybrids), the Barnes trifoliate orange and a tetraploid selection of Swingle citrumelo were also tested. Tropical Sunki mandarin was used as the reference control. Those hybrids coming from the cross of Sunki × Flying Dragon induced large tree sizes to Valencia sweet orange as well as the other citrandarins, Tropical Sunki mandarin and the Sunki mandarin × Rangpur lime hybrids, whereas only the tetraploid Swingle citrumelo behaved as a dwarfing rootstock, decreasing the canopy volume by 77% compared to that induced by the most vigorous citrandarin 535. The citrandarins 543 and 602 and the citrange C38 induced the highest mean fruit production, 67.2 kg·tree−1, but they also caused pronounced alternate bearing and only the hybrid 543 led to a high production efficiency consistently. Graft incompatibility symptoms were not observed over the evaluation period, and the canopy shape of Valencia sweet orange was also influenced by the rootstocks tested. Two citrandarins and one citrange were selected as the most promising alternative rootstocks for Valencia sweet orange grown under an Aw climate, even though productivity would likely benefit from supplementary irrigation.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1243
Author(s):  
Marilia Morelli ◽  
Fernando Alves de Azevedo ◽  
Ana Julia Borim de Souza ◽  
Rodrigo Martinelli ◽  
Patrícia Marluci da Conceição

For citrus, there is no definition of the ideal fruit harvesting point for seed extraction. Some studies have shown the positive effect of postharvest refrigerated storage of fruits to obtain quality seeds. This study aimed to evaluate the influence of the fruit maturation stage on the germination of Swingle citrumelo (CS) seeds after the refrigerated storage of fruits and seeds. CS fruits were harvested at 180 days after anthesis (DAA); 210 DAA and 240 DAA. Fruits and seeds were stored in cold chamber for 0, 15, 30, and 45 days. Physicochemical analyses were performed on fruits (colour, soluble solids, acidity and ratio) and seeds (water content, germination, and emergence). Germination of seeds extracted from fruits harvested at 180, 210, and 240 DAA, without refrigerated storage, showed a positive correlation with colour index. The refrigerated storage of fruits and seeds extracted from fruits harvested at 210 DAA, increased the seed germination rate. Peel colour (IC) was correlated positively with the germination of Swingle citrumelo seeds. The results of this study revealed that the absence of refrigerated storage, harvesting Swingle citrumelo fruits, with ripe characteristics (end of harvest), results in a high seed germination rate. On the other hand, refrigerated storage of fruits and seeds extracted from fruits harvested at mid-harvest increases the seed germination rate.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 140
Author(s):  
Stefania Bennici ◽  
Giuseppina Las Casas ◽  
Gaetano Distefano ◽  
Alessandra Gentile ◽  
Giuseppe Lana ◽  
...  

In Citrus, flower induction represents the transition from vegetative to reproductive growth. The regulation of flower induction is mainly triggered by exposure to low temperatures and water-deficit stress, which activates the signaling cascade leading to an increased expression of the citrus orthologs of the FLOWERING LOCUS T (CiFT). In this study, the relationship between rootstock and flower induction under Mediterranean field conditions was investigated by monitoring the expression levels of the floral promoter CiFT2 in leaves of the pigmented sweet orange “Tarocco Scirè” grafted onto “C35” citrange and “Swingle” citrumelo rootstocks. The latter two are known to confer, respectively, high and low yield efficiency to the scion. In both rootstock/scion combinations, CiFT2 showed a seasonal expression with a peak during the inductive period in January triggered by cold temperature. The “Tarocco Scirè”/”C35” citrange combination showed the highest expression levels for CiFT2; this increased expression was correlated with yield and a higher number of flowers in the following spring, suggesting a significant effect of rootstocks on flower induction mediated by the overexpression of the CiFT2 gene.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1940
Author(s):  
Jagveer Singh ◽  
Harvinder Singh Dhaliwal ◽  
Anirudh Thakur ◽  
Gurupkar Singh Sidhu ◽  
Parveen Chhuneja ◽  
...  

The prevalence of rough lemon rootstock in India is presently threatened by the spread of Phytophthora root rot. Developing an alternative Phytophthora-resistant rootstock that also withstands other abiotic constraints is a priority for a sustainable citrus industry in India. Complementary progenitors can be found in citrus germplasm to combine the desired traits, particularly between Citrus and Poncirus, a closely related genus. The production of hybrids accumulating the desired dominant traits, irrespective of the heterozygosity level of the parents, is an effective way to develop new candidate rootstocks. Rough lemon was hybridized with Swingle citrumelo, X-639 citrandarin, and GouTou Cheng. A reliable method was developed for greater recovery of hybrid seedlings from these crosses on the basis of morphology and simple sequence repeat (SSR) markers. The greatest proportion of hybrid seedlings resulted from embryo rescue at 95 days after pollination (DAP) (48.5% in rough lemon × X-639 citrandarin and 56.7% in rough lemon × Swingle citrumelo) on the basis of multifoliate leaves. The proportion of hybrid seedlings decreased with increase in embryo development stage after 95 DAP until the last stage of observation (125 DAP). Significantly higher proportion of multifoliate seedlings was recovered by in vitro culture compared with in vivo germination from the mature seeds (26.9% vs. 5.2%, respectively). Swingle and X-639 citrandarin are not homozygous for the multifoliate allele from Poncirus, and GouTou Cheng lacks the multifoliate allele; thus, unifoliate hybrids were selected from all crosses on the basis of SSR marker genotypes.


2020 ◽  
Vol 43 ◽  
pp. e48163
Author(s):  
Marcos Eric Barbosa Brito ◽  
Pedro Dantas Fernandes ◽  
Hans Raj Gheyi ◽  
Lauriane Almeida dos Anjos Soares ◽  
Walter dos Santos Soares Filho ◽  
...  

Arid and semiarid regions are vulnerable to water deficits and salinity. Citrus plants are sensitive to saline stress and require the use of tolerant scion-rootstock combinations. Thus, this study aimed to evaluate and classify citrus scion-rootstock combinations with respect to their tolerance to salinity during seedling formation in a protected environment. An experiment was conducted in a randomized block design with a 5 x 12 x 2 factorial scheme corresponding to five levels of water salinity (0.8, 1.6, 2.4, 3.2, and 4.0 dS m-1) applied in 12 citrus rootstocks grafted with two scion varieties: ‘Tahiti’ acid lime and ‘Star Ruby’ grapefruit. The scion-rootstock combinations were evaluated for accumulated dry matter and survival index at 330 days after sowing the rootstocks. Salinity exerted different effects on the dry matter formation of scion-rootstock combinations. ‘Star Ruby’ was less sensitive to salinity, particularly when the rootstocks were the hybrids from ‘Sunki of Florida’ mandarin (TSKFL) with ‘Troyer’ citrange (CTTR) – 013 (TSKFL x CTTR – 013), common ‘Sunki’ mandarin (TSKC) with ‘Argentina’ citrange (CTARG) – 019 (TSKC x CTARG – 019), TSKC with ‘Swingle’ citrumelo (CTSW) – 031 (TSKC x CTSW – 031), and the trifoliate hybrid (HTR) - 069, as well as the varieties Volkamer lemon and Santa Cruz Rangpur lime. When grafted with ‘Tahiti’ acid lime, the rootstocks displaying the less sensitive to salinity were TSKFL x CTTR - 013 and TSKC x CTARG - 019.


2020 ◽  
Vol 26 (1) ◽  
pp. 273-287
Author(s):  
Paulo de Tarso Lima Teixeira ◽  
Gilmar Schäfer ◽  
Marina Martinello Back ◽  
Henrique Belmonte Petry ◽  
Paulo Vitor Dutra de Souza

Rootstocks of ‘Rangpur’ Lime and ‘Swingle’ Citrumelo were grown in containers with substrate in a greenhouse, aiming to evaluate the effects of N (urea) fertilization on the vegetative growth and macronutrient content of the plant tissue. The experimental design was a factorial randomized block design with four repetitions, and each experimental plot was composed of five plants. Four doses of N (0, 2.0, 4.0 and 8.0 g.plant-1) were evaluated and applied every week (15 applications) to both of the rootstocks. After 200 days of transplanting, the following parameters were evaluated: vegetative growth and total content of macronutrients on the dry weight of the leaves, stems, and roots. ‘Rangpur’ Lime was more vigorous that ‘Swingle’ Citrumelo. ‘Rangpur’ Lime showed the greatest accumulation of plant dry weight with 3.38 g.plant-1 of N and a greater root dry weight with 2.03 g.plant-1. For ‘Swingle’ Citrumelo, 2.03 g.plant-1 of N provided a greater plant dry weight, however, nitrogen fertilization reduced the root:canopy ratio of the rootstocks. The leaf content of N and P were favored by high doses of N in the tested range. Intermediate doses favored the Ca and Mg leaf contents. The leaf K content was decreased by nitrogen fertilization.


2020 ◽  
Vol 11 ◽  
pp. e3416
Author(s):  
Evandro Henrique Schinor ◽  
Marcelo Arakaki ◽  
Mariângela Cristofani-Yaly

In citrus cultivation, rootstocks are of fundamental importance and affect several characteristics of the variety used as canopy. Despite the great diversity within Citrus and related genera, the production of rootstocks in Brazil is restricted to a small number of varieties, making the citrus culture vulnerable to the appearance of phytosanitary problems. The aim of this study was to agronomically characterize fruits and seeds of seven citrandarins [Citrus sunki (Hayata) hort. ex Tanaka x Poncirus trifoliata cv. Rubidoux (L.) Raf.], obtained by controlled crossing. The orchard was installed in randomized blocks, with three replicates, in the municipality of Cordeirópolis, SP, where 20 fruits were collected in each replicate, obtained from free pollination of seven citrandarins, Swingle citrumelo and Rangpur lime. The following variables were evaluated: fruit mass, height, diameter, total number of seeds and percentage of viable seeds per fruit; number of embryos per seed, mass of one thousand seeds, number of seeds in 1.0 kg, final emergence rate, number of seedlings per seed, polyembryony rate, emergence speed index and seedling height at 60 days after sowing. For fruit size, the highest values were obtained for Swingle citrumelo. For number of embryos per seed, seedlings obtained through seed and polyembryony, citrandarin TSxPT 245 showed the highest values. Although citrandarin fruits had smaller size than fruits from commercial Rangpur lime and Swingle citrumelo rootstocks, characteristics related to seeds such as viability, polyembryony and emergence rate, were similar or superior, and can be considered potential new rootstocks for the production of citrus plants.


2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Carlos Roberto Martins ◽  
Hélio Wilson Lemos de Carvalho ◽  
Adenir Vieira Teodoro ◽  
Inácio de Barros ◽  
Luciana Marques de Carvalho ◽  
...  

This study aimed at evaluating the agronomical performance of ‘Pineapple’ sweet orange grafted on ten rootstocks, in 2011-2017 harvests, so as to recommend the best combinations to be commercially explored in citrus growing regions in Bahia and Sergipe states, Brazil. An experiment was installed to test ten rootstock for 'pineapple' sweet orange: 'Santa Cruz' Rangpur lime, 'Red Rough' Lemon, 'Orlando' Tangelo, 'Sunki Tropical' Mandarin, 'Swingle' citrumelo, the citrandarins 'Indio' and 'Riverside' and the hybrids HTR-051, LVKxLCR-010 and TSKxCTTR-002. The trial was installed in 2008 in the municipality of Umbauba in Sergipe. The experimental design was complete randomized blocks with four replications and two plants per plot. Plant spacing was 6 x 4 m which corresponds to 416 plants per hectare and the orchard was rainfed and followed conventional management. The following agronomical parameters were evaluated: vegetative growth, drought tolerance, yield and physico-chemical quality of fruits as well as the abundance of phytophagous mites. Both hybrids LVK x LCR – 010 and TSKC x CTTR-002 and the ‘Santa Cruz’ rangpur lime bestowed higher tolerance to the dry period on the ‘Pineapple’ orange tree, by comparison with higher water deficit susceptibility conferred by the ‘Orlando’ tangelo and the ‘Swingle’ citrumelo. Rootstocks HTR-051, ‘Riverside’ citrandarin, ‘Swingle’ citrumelo and TSKC x CTTR-02 induced plants to remain small and, thus, showed aptitude for culture densification. Cumulative yield of the ‘Pineapple’ orange was higher on rootstocks ‘Red Rough’ lemon and ‘Santa Cruz’ Rangpur lime, the hybrid LVK x LCR-010 and ‘Sunki Tropical’. Yield efficiency was not influenced by the rootstocks. Physico-chemical quality of fruits of ‘Pineapple’ orange is affected by the rootstocks and meets the requirements of juice industries. Regarding plant resistance, the rootstocks did not influence the population density of mites P. oleivora, E. banksi and T. mexicanus on ‘Pineapple’ oranges. Results show that both rootstocks ‘Red Rough’ lemon and ‘Santa Cruz’ rangpur lime conferred high regularity to ‘Pineapple’ orange trees in citrus growing regions in Bahia and Sergipe states.


Sign in / Sign up

Export Citation Format

Share Document