Stabilization of pH in Solid-matrix Hydroponic Systems

HortScience ◽  
1993 ◽  
Vol 28 (10) ◽  
pp. 981-984 ◽  
Author(s):  
Jay Frick ◽  
Cary A. Mitchell

2-[N-morpholino] ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome: ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 m m) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite: 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g·m-2·day-1) were about double that of the control (8.2 g·m-2·day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g·m-2·day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mm MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

2012 ◽  
Vol 1475 ◽  
Author(s):  
Pamela B. Ramos ◽  
Néstor O. Fuentes ◽  
Vittorio Luca

ABSTRACTThe pyrolysis of ion exchange resin beads that are used for the purification of water in reactor primary- and secondary-cooling circuits can result in stable and leach resistant carbonaceous products. However, free flowing beads are less desirable waste forms for disposal in sub-surface or surface repositories than monolithic masses of low porosity. We have investigated the pyrolysis of polymeric resin – cation exchange resin composites to give mechanically robust and chemically durable monolithic carbonaceous waste forms that are suitable for repository disposition. Also investigated was the dependence of product properties on various processing parameters (temperature ramp and final temperature). As a first approach, epoxy resins were used for the preparation of monoliths since such resins cure at room temperature and result in a relatively high carbon yield. Carbonaceous monolithic products were prepared at 400, 500, 600, 700 and 800 °C using a temperature ramp of 2°C/min. The products were maintained at the chosen temperatures for a period of one hour. Mass losses, volume reduction, hardness and compressive strength were measured and mathematical functions are proposed to describe the measured values of these properties. The carbon monoliths were observed to be mechanically robust.


Talanta ◽  
2011 ◽  
Vol 83 (5) ◽  
pp. 1496-1500 ◽  
Author(s):  
Feifang Zhang ◽  
Yapu Li ◽  
Bingcheng Yang ◽  
Xinmiao Liang

2021 ◽  
Author(s):  
Renat KHAYDAROV ◽  
Murodjon ABDUKHAKIMOV ◽  
Ilnur GARIPOV ◽  
Ilkham SADIKOV ◽  
Praveen Thaggikuppe KRISHNAMURTHY ◽  
...  

Cation exchange resins are widely used for water softening and demineralization all over the world. Deposition, metabolism, and growth of bacteria and fungi on the resin beads cause capacity and performance losses, especially during repeated use in cyclic and long-term operations. Over the last decades, modification of different materials by silver nanoparticles (AgNPs) has demonstrated to present significant opportunities in mitigating biofouling problems. The paper deals with a novel facile technique of introducing silver colloids (AgC) into cation exchange resin, providing the formation of silver micro- and nano-inclusions on the cation resin beads. The scanning electron microscope (SEM) measurements have confirmed a spherical shape and uniform distribution of AgC (50 – 1000 nm) on the surface of the resin. To evaluate the antibacterial and fungicidal properties of AgC on the cation resin beads, we have used Aureobasidium sp., Penicillium sp., and Staphylococcus aureus cultures. AgC coating has proved to efficiently prevent bacteria/biofilm growth on the cation resin beads and thereby significantly increase the service life of the cation exchange resin, especially in hot climatic conditions. Possible antibiofouling mechanisms of the modified nanocomposite cationite have been discussed. Since 2020, the modified silver-containing cationite has been successfully utilized for water softening systems of boiler equipment in Uzbekistan, demonstrating the suitability of the suggested facile coating technique for reducing fouling of cation-exchange resin.


2019 ◽  
Vol 7 (31) ◽  
pp. 18285-18294 ◽  
Author(s):  
Ping He ◽  
Kok-Giap Haw ◽  
Shichen Yan ◽  
Lingxue Tang ◽  
Qianrong Fang ◽  
...  

Carbon beads with a well-defined micropore structure and excellent CO2 capture ability were obtained by carbonization of K-exchanged cation exchange resin precursors.


2011 ◽  
Vol 24 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Toshiaki Hattori ◽  
Masaki Yoshitomo ◽  
Satoshi Mori ◽  
Daichi Miyamoto ◽  
Ryo Kato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document