scholarly journals COMPARATIVE EFFECTS OF SOIL SOLARIZATION AND OTHER AGRIPLASTIC MULCH SYSTEMS ON INCREASED GROWTH RESPONSE AND REDUCTION OF EARLY BLIGHT DISEASE OF FLORADADE TOMATO

HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 732f-732
Author(s):  
C. Stevens ◽  
V. A. Khan ◽  
M.A. Wilson ◽  
D. J. Collins ◽  
J. E. Brown ◽  
...  

Agriplastic black mulch (BM), row cover (spunbonded) plus black mulch (RBM) and solarized soil treatments plus black mulch (SBM). row cover plus black mulch on solarized soil (RSBM) and row cover plus solar&d soil (RSBS) increased Floradade tomato yield from 56 to 285%. number of tomatoes and plant height compared to the non-solarized bare soil (BS). When comparing increased growth response (IGR) of the plants grown in the solarized soil with no row cover agriplastic treatments, there was no significant differences among them. When comparing the IGR parameters of tomato plants grown under SBS, BM, and RBS there were no significant differences among them. Spunbonded row cover treatments increased IGR of tomatoes over all treatments without row cover. A significant increase in plant growth promoting rhizobacteria (PGPR) was observed in the rhizosphere soil of Floradade tomatoes grown in solarized soil alone and in those other agriplastic treatments compared to bare soil. There appear to be no differences in PGPR population among SBS and all agriplastic treatments.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mujahid Rasool ◽  
Adnan Akhter ◽  
Gerhard Soja ◽  
Muhammad Saleem Haider

AbstractThe individual role of biochar, compost and PGPR has been widely studied in increasing the productivity of plants by inducing resistance against phyto-pathogens. However, the knowledge on combined effect of biochar and PGPR on plant health and management of foliar pathogens is still at juvenile stage. The effect of green waste biochar (GWB) and wood biochar (WB), together with compost (Comp) and plant growth promoting rhizobacteria (PGPR; Bacillus subtilis) was examined on tomato (Solanum lycopersicum L.) physiology and Alternaria solani development both in vivo and in vitro. Tomato plants were raised in potting mixture modified with only compost (Comp) at application rate of 20% (v/v), and along with WB and GWB at application rate of 3 and 6% (v/v), each separately, in combination with or without B. subtilis. In comparison with WB amended soil substrate, percentage disease index was significantly reduced in GWB amended treatments (Comp + 6%GWB and Comp + 3%GWB; 48.21 and 35.6%, respectively). Whereas, in the presence of B. subtilis disease suppression was also maximum (up to 80%) in the substrate containing GWB. Tomato plant growth and physiological parameters were significantly higher in treatment containing GWB (6%) alone as well as in combination with PGPR. Alternaria solani mycelial growth inhibition was less than 50% in comp, WB and GWB amended growth media, whereas B. subtilis induced maximum inhibition (55.75%). Conclusively, the variable impact of WB, GWB and subsequently their concentrations in the soil substrate was evident on early blight development and plant physiology. To our knowledge, this is the first report implying biochar in synergism with PGPR to hinder the early blight development in tomatoes.


2019 ◽  
Vol 13 (1) ◽  
pp. 215-222 ◽  
Author(s):  
Yuliya Kolomiiets ◽  
Ivan Grygoryuk ◽  
Artur Likhanov ◽  
Lyudmila Butsenko ◽  
Yaroslav Blume

Background: By inducing the production of inhibitory allelochemicals and mechanisms of systemic resistance plant growth promoting bacteria (PGPB) help plants to cope with stresses. Materials and Methods: In this study cell suspensions of Bacillus subtilis, Pseudomonas fluorescens or Azotobacter chroococcum were used to test the efficacy of these PGPB in inducing resistance in tomato (Lycopersicon esculentum Mill) against Clavibacter michiganensis subsp michiganensis, a bacteria known to cause canker disease. To test this hypothesis, seedlings of Chaika variety, characterized by short growing, early-ripening, high productivity and resistance against fusarium and the C. michiganensis strain ІZ-38 isolated in Kyiv were employed. Results and Conclusion: The use of cell suspensions of the PGPB B. subtilis, A. chroococcum or P. fluorescens induced an increment in the resistance of tomato plants against the causative agent of bacterial canker (C. michiganensis subsp. michiganensis) by 42–50%. PGPB in fact promoted in C. michiganensis infected tomato plants: i) the accumulation of chlorophyll a and b and carotenoids; ii) the thickening of the upper and lower epidermis of leaves; iii) the deposition of biopolymers with protective properties in epidermal cells; iv) the activity of the peroxidase enzyme and v) the net productivity of photosynthesis.


2008 ◽  
Vol 6 (5) ◽  
pp. 442-452 ◽  
Author(s):  
Jorge Barriuso ◽  
Beatriz Ramos Solano ◽  
Rupert G. Fray ◽  
Miguel Cámara ◽  
Anton Hartmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document