scholarly journals 477 Effect of High-temperature Controlled-atmosphere Treatments for Insect Control in `Bartlett' Pear Fruit

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 527C-527 ◽  
Author(s):  
Elizabeth Mitcham ◽  
Lisa Neven ◽  
Bill Biasi

High-temperature, controlled-atmosphere treatments were explored for disinfestation of codling moths from `Bartlett' pear fruit. Fruit were freshly harvested in 1996 and 1997 and sorted for uniformity and absence of defects. Fruit were exposed to forced-heating at 46 °C for 1, 2 and 3 h in either air or a controlled atmosphere of 1% oxygen and 15% carbon dioxide. Fruit were evaluated during ripening at 20 °C immediately after treatment (1997 only) and after 3 weeks of cold storage at -1 °C. Fruit were ripened with and without an exogenous ethylene treatment in 1997. Heat treatments, and particularly heat plus CA treatments, slowed fruit ripening, even after fruit had been stored for 3 weeks. The longer the treatment, the greater the inhibition. Fruit from longer treatments were firmer than untreated fruit after 4 days of ripening, but treatment with exogenous ethylene did not overcome the inhibition in the rate of ripening, although fruit from all treatments softened faster. The mortality of codling moths following exposure to the same treatments was also determined. With the heat plus controlled-atmosphere treatments, 100% mortality was achieved in 2.5 h with the faster heating rate used in our 1996 experiment, while it took 3 h to achieve 100% mortality with the slower heating rate.

HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 562-563 ◽  
Author(s):  
George D. Nanos ◽  
F. Gordon Mitchell

`High-temperature controlled-atmosphere (high CO2/low O2) conditioning was investigated as a possible treatment to delay the incidence of internal breakdown of peaches and nectarines (Prunus persica L. Batsch) during subsequent cold storage. Maintaining an atmosphere of 5% to 15% CO2 added to air or to 1% to 5% O2 while conditioning peaches for 2 days at 20C partially prevented fruit ripening (compared to fruit conditioned in air), as measured by flesh softening and loss of green pigment, while no off-flavors were detected. Conditioning of peaches at 20C for 4 days in air or in air + 20% CO2 was detrimental to fruit quality, as indicated by flesh softening or detection of off-flavors.


Author(s):  
R. R. Baker

AbstractFlue-cured Virginia tobacco has been heated in nitrogen and nitrogen/oxygen mixtures under flow conditions, and the rate of formation of carbon monoxide and carbon dioxide has been determined as a function of temperature, heating rate, and proportion of oxygen in the gas. When the tobacco is heated in nitrogen at heating rates comparable to those in a smouldering cigarette, 27 % of the carbon content of the tobacco is converted to carbon oxides. Both carbon oxides show two distinct formation regions: a low-temperature region (about 100°-450°C), and a high-temperature region (about 550°-900°C). These temperature limits are almost identical to those predicted from studies on the combustion coal of a cigarette burning in air. When tobacco, or the carbonaceous residue remaining after the pyrolysis experiments, is heated in nitrogen / oxygen mixtures, the total amount of carbon converted to carbon monoxide and carbon dioxide is independent of heating rate, but the relative proportions of the two oxides are strongly dependent on heating rate. At the lower heating rate, proportionally less carbon monoxide, and more carbon dioxide, is produced. Under oxidation conditions, about 70 % of both carbon oxides formed in the low-temperature region (100°-450°C) are produced by tobacco decomposition reactions, whereas in the high-temperature region about 10-20 % of the carbon monoxide, and 2-9 % of the carbon dioxide, are produced by tobacco decomposition.


1999 ◽  
Vol 589 ◽  
Author(s):  
Renu Sharma ◽  
Eberhard Schweda ◽  
Dirk Naedele

AbstractStabilization of zirconia by anion exchange (N for O) is a novel idea. A number of oxy-nitrides with flourite-related (cubic) structure have been reported to form at high temperatures (1100°C). We have used a TEM equipped with environmental cell and Gatan Imaging Filter (GIF) to study the nitridation behavior of zirconia. The in situ observations reveal the formation of a cubic structure at ≈800°C when the Zr(OH) 4×H2O precursor was heated in ≈2 torr of NH3. The presence of N in the lattice is confirmed by electron energyloss spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document