scholarly journals Complete Sequences of the S-genes, Sd- and Sh-RNase cDNA in Apple

HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 712-715 ◽  
Author(s):  
Kentaro Kitahara ◽  
Junichi Soejima ◽  
Hiromitsu Komatsu ◽  
Hirokazu Fukui ◽  
Shogo Matsumoto

The S-locus genes in the pistil (S-RNases) were cloned from the apple (Malus ×domestica Borkh.) cultivar Akane (S-genotype SdSh from pollination analysis). The Sd- and Sh-RNase corresponded to S7- and S24-RNase, which have been cloned from `Idared' and `Braeburn', respectively. Sh-RNase was very similar to Sf- and Sg-RNases at the deduced amino acid-sequence levels (93%). We developed an S-allele specific polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis method for distinguishing the Sh from Sf and Sg, and the Sh-alleles of `Akane', `Touhoku 2', `Vista Bella', and `Worcester Pearmain' were identified. We also identified the S-allele genotypes of 16 apple cultivars.

HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 708-710 ◽  
Author(s):  
Shogo Matsumoto ◽  
Kentaro Kitahara ◽  
Sadao Komori ◽  
Junichi Soejima

S-allele genotypes of nine apple (Malus ×domestica Borkh.) cultivars were identified using S-allele–specific polymerase chain reaction (PCR)–restriction fragmentlength polymorphism (RFLP) analysis. A new S-allele, Sg, was proposed to be present in `American Summer Pearmain', `Indo', `Kitanosachi', and `Meku 10'. This allele is very similar to Sf at the nucleotide sequence (92%) and deduced amino acid sequence (94%) levels.


1994 ◽  
Vol 71 (05) ◽  
pp. 651-654 ◽  
Author(s):  
Rainer Kalb ◽  
Sentot Santoso ◽  
Katja Unkelbach ◽  
Volker Kiefel ◽  
Christian Mueller-Eckhardt

SummaryAlloimmunization against the human platelet alloantigen system Br (HPA-5) is the second most common cause of neonatal alloimmune thrombocytopenia (NAIT) in Caucasian populations. We have recently shown that a single base polymorphism at position 1648 on platelet mRNA coding for GPIa results in an aminoacid substitution at position 505 on the mature GPIa which is associated with the two serological defined Br phenotypes.Since DNA-typing of platelet alloantigens offers possibilities for useful clinical applications, we designed genomic DNA-based restriction fragment length polymorphism (RFLP) typing for Br alloantigens. To establish this technique we analyzed the genomic organization of GPIa adjacent to the polymorphic base. Using the polymerase chain reaction (PCR) of blood cell DNA we have identified two introns (approximately 1.7 and 1.9 kb) flanking a 144 bp coding sequence of the GPIa gene encompassing the polymorphic base 1648. Based on the in- tron sequence, a PCR primer was constructed to amplify a 274 bp fragment which was used for allele-specific RFLP to determine the Br genotypes. The results of RFLP analysis using Mnll endonuclease obtained from 15 donors (2 Br37*, 2 Br^ and 11 Brb/b) correlate perfectly with serological typing by monoclonal antibody-specific immobilization of platelet antigens (MAIPA) assay.


Plant Disease ◽  
2001 ◽  
Vol 85 (1) ◽  
pp. 76-79 ◽  
Author(s):  
Keri Wang ◽  
Chuji Hiruki

DNA isolated from symptomatic canola (Brassica napus, Brassica rapa) and dandelion (Taraxacum officinale) was used to amplify 16S ribosomal DNA fragments by polymerase chain reaction using two pairs of universal primers P1/P6 and R16F2n/R2. Restriction fragment length polymorphism (RFLP) analysis of the amplified DNA fragments using endonucleases AluI, HhaI, HpaII, MseI, RsaI, and Sau 3AI revealed two distinct types of phytoplasmas in canola with similar symptoms. One had the same RFLP profiles as the phytoplasmas in subgroup 16SrI-A, whereas the other one had RFLP profiles similar to those of phytoplasmas in subgroup 16SrI-B. Phytoplasmas were detected in symptomatic dandelion plants that were collected from canola and alfalfa fields where severe alfalfa witches'-broom occurred. Comparative studies indicated that two different phytoplasmas were associated with the dandelion plants. One was identified as a member of subgroup 16SrI-A, whereas another one was classified as a member of a distinct subgroup in the aster yellows group on the basis of the unique RFLP patterns.


Sign in / Sign up

Export Citation Format

Share Document