scholarly journals Technique for Collecting Thrips for Use in Insecticide Efficacy Trials

HortScience ◽  
2001 ◽  
Vol 36 (5) ◽  
pp. 925-926 ◽  
Author(s):  
Raymond A. Cloyd ◽  
Daniel F. Warnock ◽  
Keith Holmes

An affordable device comprised of off-the-shelf parts, initially called the “Small Insect Aspirator” was developed to gently collect western flower thrips, Frankliniella occidentalis (Pergande), from a rearing colony for use in insecticide efficacy trials. This device allows for a designated number of thrips to be placed onto any experimental test plant. The device is a battery-motorized driven aspirator comprised of two pieces of copper tubing (6.0 mm in diameter) attached to a copper housing, which contains a threaded plastic lid and glass vial (20-mL). The aspirator is fully portable when attached to a battery-driven vacuum device, which allows researchers to efficiently collect thrips in outdoor field situations. When turned on, the vacuum gently pulls western flower thrips (adult and larval stages) through the copper tubing and deposits them into the collection vial. The vial is then detached and sealed with a threaded lid until the collected thrips are deposited onto experimental test plants.

HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1708-1714
Author(s):  
Devin L. Radosevich ◽  
Raymond A. Cloyd ◽  
Nathan J. Herrick

The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major insect pest of greenhouse-grown horticultural crops. Western flower thrips causes direct and indirect damage by feeding on plant leaves, flowers, and fruits, and by transmitting viruses that can result in greenhouse producers experiencing substantial economic losses. Consequently, insecticides are used to suppress western flower thrips populations. However, issues associated with applying insecticides may affect the suppression of western flower thrips populations. Therefore, experiments were conducted under greenhouse conditions to determine the effects of the spray volume applied and application frequency on insecticide efficacy against western flower thrips adults located in transvaal daisy, Gerbera jamesonii, cut flowers. Four spray volumes (5.0, 10.0, 12.5, and 25.0 mL), two application frequencies (one or two spray applications), and three insecticides [spinosad (Conserve), chlorfenapyr (Pylon), and flonicamid (Aria)], each with a different mode of action, were tested. The insecticide treatments had the greatest effects on the mean percent mortality of western flower thrips adults regardless of spray volume or application frequency. However, in Expt. 3, the 5.0- and 10.0-mL spray volumes resulted in a higher mean percent mortality of western flower thrips adults than the 2.5-mL spray volume. Spinosad and chlorfenapyr resulted in a mean percent mortality of more than 72% for western flower thrips adults, whereas flonicamid resulted in mean percent mortality between 40% and 91%. Our study demonstrates that certain insecticides are more effective against western flower thrips adults located in transvaal daisy flowers than others, which will help greenhouse producers effectively manage western flower thrips populations.


1999 ◽  
Vol 89 (6) ◽  
pp. 579-588 ◽  
Author(s):  
F. van de Wetering ◽  
M. van der Hoek ◽  
R. Goldbach ◽  
C. Mollema ◽  
D. Peters

AbstractFourteen populations of the western flower thrips Frankliniella occidentalis Pergande, originating from different hosts and countries in Asia, Europe, North America and New Zealand, were analysed for their competency and efficiency to transmit tomato spotted wilt virus (TSWV). All populations acquired and subsequently transmitted the virus, and were thus competent to transmit. They show marked differences in their efficiency, expressed as the percentage of transmitting adults. Efficiencies varied from 18% for a F. occidentalis population from the USA (US2) to 75% for a population from Israel (IS2). The differences between populations were not affected by the amount of virus ingested or by the host plant used. However, the tospovirus species studied and age at which the larvae acquired the virus affected the efficiency to transmit. First instar larvae of the NL3 population from The Netherlands were able to acquire tomato spotted wilt virus, whereas second instar larvae failed to do so. However, both instars of this population acquired impatiens necrotic spot virus (INSV), another tospovirus. This and tomato spotted wilt virus were both acquired by both larval stages of the populations IS2 and US2, although their ability to acquire virus decreased with their age. Hence, it is likely that, in general, both instar larvae of most F. occidentalis populations are competent to acquire both tospoviruses. These results show that large differences exist in the efficiency by which tomato spotted wilt is transmitted by the various F. occidentalis populations and that the ability to acquire tospovirus decreases with the age of the larvae


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1384
Author(s):  
Dinar S. C. Wahyuni ◽  
Young Hae Choi ◽  
Kirsten A. Leiss ◽  
Peter G. L. Klinkhamer

Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.


2008 ◽  
Vol 98 (4) ◽  
pp. 355-359 ◽  
Author(s):  
P. Bielza ◽  
V. Quinto ◽  
C. Grávalos ◽  
E. Fernández ◽  
J. Abellán ◽  
...  

AbstractThe stability of spinosad resistance in western flower thrips (WFT),Frankliniella occidentalis(Pergande), populations with differing initial frequencies of resistance was studied in laboratory conditions. The stability of resistance was assessed in bimonthly residual bioassays in five populations with initial frequencies of 100, 75, 50, 25 and 0% of resistant individuals. There were no consistent changes in susceptibility of the susceptible strain after eight months without insecticide pressure. In the resistant strain, very highly resistant to spinosad (RF50>23,000-fold), resistance was maintained up to eight months without further exposure to spinosad. In the absence of any immigration of susceptible genes into the population, resistance was stable. In the case of the population with different initial frequency of resistant thrips, spinosad resistance declined significantly two months later in the absence of selection pressure. With successive generations, these strains did not change significantly in sensitivity. Spinosad resistance inF. occidentalisdeclined significantly in the absence of selection pressure and the presence of susceptible WFT. These results suggest that spinosad resistance probably is unstable under field conditions, primarily due to the immigration of susceptible WFT. Factors influencing stability or reversion of spinosad resistance are discussed.


2015 ◽  
Vol 16 (4) ◽  
pp. 211-215 ◽  
Author(s):  
Surendra K. Dara

Greenhouse white fly, Trialeurodes vaporariorum (Westwood); western flower thrips, Frankliniella occidentalis (Pergande); and strawberry aphid, Chaetosiphon fragaefolii (Cockerell), are common pests of strawberries in California and are vectors of one or more viruses. Most of the viruses transmitted by these vectors do not cause symptoms on strawberry when the infection occurs individually. However, when one of the viruses (Beet pseudoyellows virus or Strawberry pallidosis-associated virus) transmitted by T. vaporariorum is present along with one of the viruses transmitted by F. occidentalis, C. fragaefolii, or other sources, it results in a virus decline of strawberry, which can cause significant crop losses. Stunted root and plant growth, purple coloration of foliage, and dieback of the plant are some of the symptoms associated with virus decline. Increases in T. vaporariorum infestations during the past few years significantly elevated the risk of whitefly as a crop pest and a disease vector. This article reviews virus decline of strawberry, symptoms of infection, and the current status of insect vectors in California strawberries. Accepted for publication 17 November 2015. Published 20 November 2015.


2008 ◽  
Vol 9 (1) ◽  
pp. 30 ◽  
Author(s):  
Mrittunjai Srivastava ◽  
Lara Bosco ◽  
Joe Funderburk ◽  
Anthony Weiss

Feeding by the western flower thrips, Frankliniella occidentalis, causes damage to the fruits of pepper, and the species is the key vector of Tomato spotted wilt virus. Effective management integrates conservation of populations of the natural predator, Orius insidiosus, with the use of reduced-risk insecticides, namely spinosad. We conducted field experiments in northern Florida in 2005 and 2006 and in central Florida in 2006 to evaluate the new reduced-risk insecticide spinetoram for control of thrips and to determine the impact on natural populations of O. insidiosus. Spinetoram at 61 g ai/ha was as effective as spinosad at 140 g ai/ha against the western flower thrips and the other common thrips in Florida, Frankliniella tritici and Frankliniella bispinosa. The mean numbers of the predator were very high in all treatments in each experiment, and their numbers relative to the numbers of thrips indicated that predation was sufficient to suppress thrips populations in all treatments. Broad-spectrum insecticides when included in the experiments provided little or no control; sometimes, they flared thrips numbers compared to untreated pepper. Accepted for publication 25 October 2007. Published 18 January 2008.


Sign in / Sign up

Export Citation Format

Share Document