scholarly journals Nutrient Uptake of Single-node Cutting Rose `Red Velvet' and `Vital' by Nutritional Control in a Plant Factory

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 769A-769
Author(s):  
Kyung-Hwan Yeo* ◽  
Jung-Min Son ◽  
Yong-Beom Lee

The plant factory to control growing system automatically is necessary to cultivate single-node cutting rose, which produce large numbers of uniform shoots per unit area in short cultivation. However, the recirculation of the nutrient solution in closed system leads to several problems. One of them is connected with the quality of nutrient solution and the supply of minerals. The uptake of specific nutrients depends on growth and development, or plant stage, which results in a shift in ionic ratio in the drainage water compared to the nutrient solution supplied. Consequently, the nutrient supply should be controlled to be equal to the demand of the plant to avoid disorder of nutrient solution, such as depletion or accumulation. Therefore this study was conducted to examine the effect of mineral nutritional control on nutrient uptake of single-node cutting rose `Red velvet' and `Vital' in a plant factory. The nutritional control of nutrient solution was conducted by five methods: the control of electrical conductivity (EC), N, P, and K elements (NPK), macro elements (M), macro and micro elements (MM) to target ranges in root zone, and the supplement of nutrient solution (S). In NPK, M, and MM control system, the input of nutrients was calculated as amounts of absorption by the plants compared to target values in root environment. The fertilizer supplement of N, P, and K was lower in EC control system than other control systems. In EC and S control system, the concentration of NO3- -N and K in root zone exceed optimal range whereas P, Ca, and Mg decreased at the later stage of growth. The concentrations of each nutrient in root environment were kept at the target ranges in M and MM control system, which showed optimum yield and product quality.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 836D-837
Author(s):  
Kyung-Hwan Yeo* ◽  
Jung-Min Son ◽  
Yong-Beom Lee

Plant factory is a new plant production system that enables high quality, year-round, and planned production by controlling the environment. However, the recirculation of the nutrient solution leads to several problems because of unstable condition by nutrient uptake. The concentrations of nutrients in the recirculating solution should be kept at the required levels, since an optimum nutrition is determined by the specific concentrations of an element and mutual ratio to other nutrients in the root zone. Consequently, the nutrient solution is required adjustments based on regular analysis of the drain water and relationships among nutrient uptake, growth stage, and environmental factors for plant quality. This study was conducted to examine the effect of mineral nutritional control by five different methods on growth and photosynthesis of single-stemmed rose `Red velvet' and `Vital' in a plant factory. The nutritional control of nutrient solution was as following: the control of electrical conductivity (EC), N, P, and K elements (NPK), macro elements (M), macro and micro elements (MM) to target ranges in root environment, and the supplement of nutrient solution (S). The growth of single-node cutting rose `Vital' and `Red velvet' was higher in the M and MM than that of other control systems. Although M and MM system showed no significant difference, the photosynthetic rate, stomatal conductance, and transpiration rate were higher than those with other systems. The maximal efficiency of photochemistry (Fv/Fm) was higher in the M and MM control system, which showed the highest root activity. These results could be attributable for modelling the mineral nutritional control system, which reduces the use of fertilizers and increases the productivity of single-stemmed rose.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768A-768
Author(s):  
Eun Young Yang* ◽  
Keum Soon Park ◽  
Dong Soo Lee ◽  
Yong-Beom Lee

This study was conducted to understand the effect of different nutrient control method on the growth, cut-flower quality, root activity and fertilizer consumption. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macroelement control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). The mineral nutrient control method had significantly effected on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with other mineral nutrients control method. Although EC-A and EC-D could save total amount of fertilizer compared to M&M and M, the growth and quality of the rose with EC control system were lower than those with mineral nutrient control system. Therefore, these result suggest that EC control system is not economic method in a closed hydroponic system.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 793
Author(s):  
Ji-Yoon Lee ◽  
Miki Hiyama ◽  
Shoko Hikosaka ◽  
Eiji Goto

The medicinal plant, Ophiorrhiza pumila, naturally grows on the floors of humid inland forests in subtropical areas. It accumulates camptothecin (CPT), which is used as an anti-tumor agent, in all organs. We investigated the optimal hydroponic root-zone environments for growth and CPT accumulation in O. pumila in a plant factory. In experiment 1, to determine the appropriate nutrient solution concentration (NSC), O. pumila was cultivated using four concentrations (0.125, 0.25, 0.5, and 1.0 times) of a commercial solution for 63 days after the start of treatment (DAT). The electrical conductivity of these NSCs was 0.6, 0.9, 1.5, and 2.7 dS m−1, respectively. The total dry weights at 0.25 and 0.5 NSCs were higher than those at the other two NSCs. CPT content at 0.25 NSC was significantly higher than those at other NSCs. In experiment 2, to investigate an appropriate nutrient solution temperature (NST), O. pumila was cultivated at four NSTs (10, 20, 26, and 35 °C, named as T10, T20, T26, and T36, respectively) for 35 DAT. The growth and CPT content at T20 was the highest among the treatments. Therefore, root-zone environments of 0.25 NSC and 20 °C of NST produced the best growth and CPT accumulation in O. pumila.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 480f-481
Author(s):  
C. Elizabeth Succop ◽  
Steven E. Newman

Fresh-market basil has become a viable greenhouse commodity in Colorado. Marketing pressures and profit advantages also encourage the production of certified organic produce. The research objectives were to determine the length of time basil plants were productive in the greenhouse and to compare the production of fresh-market basil grown with three root zone systems and two fertilizer treatments. The three systems were hydroponic rockwool slab culture, hydroponic perlite raised bed culture, and hydroponic peat/perlite/compost bag culture. The two types of hydroponic fertilizer treatments were a salt-based formulated nutrient solution and an organic solution consisting of fermented poultry compost, hydrolized fish emulsion, and soluble kelp. The plants were harvested once per week for fresh weight determination. The results from the two runs show greater productivity for the plants in the perlite system as well as the bag mix system when fertilized with the organic fertilizer compared to salt-based fertilizer. However, productivity of the plants in the rockwool system was greater with the salt-based treatment compared to the organic treatment.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.


Sign in / Sign up

Export Citation Format

Share Document