scholarly journals Growth and Fertilizer Consumption of Single-node Cutting Rose `Versillia' by Mineral Nutrient Control in a Closed Hydroponic System

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768A-768
Author(s):  
Eun Young Yang* ◽  
Keum Soon Park ◽  
Dong Soo Lee ◽  
Yong-Beom Lee

This study was conducted to understand the effect of different nutrient control method on the growth, cut-flower quality, root activity and fertilizer consumption. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macroelement control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). The mineral nutrient control method had significantly effected on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with other mineral nutrients control method. Although EC-A and EC-D could save total amount of fertilizer compared to M&M and M, the growth and quality of the rose with EC control system were lower than those with mineral nutrient control system. Therefore, these result suggest that EC control system is not economic method in a closed hydroponic system.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768B-768
Author(s):  
Eun Young Yang* ◽  
Hye Jin Lee ◽  
Yong-Beom Lee

The application of a closed hydroponic system for rose poses some horticultural problems. The nutrient uptake by the plants changes constantly depending upon environmental conditions and growing stages, which results in the imbalanced composition of the drained solution and aggravates root environmental conditions. This research was aimed to observe the effect of mineral nutrient control method on the nutrient solution management in a closed hydroponic system. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, and Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macroelement control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). In the EC control method, the concentration of NO3 -N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth. The overall mineral nutrient content increased with S. On the other hand, the nutrient content of root environment was maintained optimally with M&M and M.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768C-768
Author(s):  
Eun Young Yang* ◽  
Jung-Sim Oh ◽  
Yong-Beom Lee

This experiment was carried out to observe the effect of mineral nutrient control in photosynthetic capacity of single-node cutting rose grown in a closed hydroponic system. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macro-element control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). The photosynthetic rate, stomatal conductance and transpiration rate at 35 days after transplant with M&M and M were higher compared to those with S, EC-A and EC-D. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Therefore, it is possible to increase photosynthetic capacity of rose with mineral nutrient control in recirculated nutrient solution.


2020 ◽  
Vol 77 (3) ◽  
pp. 527
Author(s):  
Afshan Rabnawaz ◽  
Riaz Ahmad ◽  
Muhammad Akbar Anjum

2014 ◽  
Vol 678 ◽  
pp. 299-304
Author(s):  
Bao Guo Yao ◽  
Zhe Feng Zhang

The automatic monitoring and control method for aerosol cultivation of lettuce was proposed by real-time monitoring and automatic control of the cultivation environment, on-line detection and automatic control of nutrient solution, and the combination of field control and remote control, which has realized the intelligent management of aerosol cultivation of lettuce based on plant factory. The monitoring and control system of aerosol cultivation, the control model for the spray frequency of nutrient solution and the fuzzy control method for the pH value control of nutrient solution were introduced. The control system has been applied in the agricultural science and technology park, and the results show that the aerosol cultivation of lettuce has advantages over the traditional method.


Sign in / Sign up

Export Citation Format

Share Document