scholarly journals (291) Plant Regeneration through Direct Somatic Embryogenesis in Homalomena `Emerald Gem'

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1078A-1078
Author(s):  
Qian Zhang ◽  
Jianjun Chen ◽  
Richard J. Henny

Homalomena `Emerald Gem' is an important ornamental foliage plant and widely used for interior plantscaping. Current propagation of this cultivar has been primarily carried out through in vitro culture by organogenesis; regeneration through somatic embryogenesis has not been documented. This report describes successful plant regeneration via direct somatic embryogenesis from explants of different organs. Somatic embryos formed at and around the cut surface of petiole, spathe, and peduncle explants. Embryos also appeared at the base between expanded ovaries of the spadix segment, and around midrib of leaf explants. The optimal treatments for somatic embryo occurrence from petiole, spathe, and peduncle explants were MS medium containing 0.2 mg/L NAA or 0.5 mg/L 2, 4-D with 2.0 mg/L CPPU, and for spadix explants were MS medium with 0.5 mg/L PAA and 2.5 mg/L TDZ. Somatic embryos appeared 6 to 8 weeks after culture and formed large embryo clumps in 3 to 4 months. Somatic embryos produced more secondary embryos and geminated on induction medium. Multiple shoot development and plant regeneration occurred from somatic embryo clusters on MS medium without hormone or with 2 mg/L BA and 0.2 mg/L NAA. The regenerated plants grew vigorously after transplanting to a soilless container substrate in a shaded greenhouse.

Author(s):  
Ghan Singh Maloth ◽  
Rajinikanth Marka ◽  
Rama Swamy Nanna

In the present study it was reported on direct somatic embryogenesis and plant regeneration from cotyledon and leaf explants of Turkey berry/pea egg plant (Solanum torvum SW), a medicinally important plant. Somatic embryogenesis has several advantages over other routes of in vitro plant regeneration. Somatic embryogenesis was induced directly from cotyledon and leaf explants on MS medium fortified with BAP (0.5 mg/L)+NAA (0.5-6.0 mg/L). High percentage of somatic embryogenesis (90%), maximum number of somatic embryos formation (62±0.18)  along with high percentage (76%) conversion of somatic embryos into bipolar embryos was observed on cotyledon explants in 0.5 mg/L BAP+2.5 mg/L NAA. At the same concentration of BAP (0.5 mg/L)+NAA (2.5 mg/L) also resulted  on the maximum percentage of somatic embryogenesis (92%), the highest number of somatic embryos formation (88±0.15) and the highest percentage (76%) of somatic embryos conversion into bipolar embryos in leaf explants. A mixture of globular, heart and torpedo-shaped embryos were germinated on MS medium supplemented with 0.5 mg/L IAA+1.0-4.0 mg/L BAP. Maximum germination frequency (75±0.14) of somatic embryos and plantlet formation was found in 0.5 mg/L IAA+2.0 mg/L BAP, but they didn’t germinate on ½ MSO and MSO media. The survival rate of regenerated plants after field transfer was recorded to be 75%. These regenerated plants were found morphologically similar to donor plants. The present protocol can be used for conservation of the species and also for genetic transformation experiments in S. torvum.


1970 ◽  
Vol 14 ◽  
pp. 31-38 ◽  
Author(s):  
M Rahman ◽  
M Asaduzzaman ◽  
N Nahar ◽  
MA Bari

Somatic embryos were obtained from cotyledon and midrib explants of Solanum melongena L., cultivar Loda. For callus induction, medium was supplemented with different concentrations of auxin singly or in combination with BAP. The best callusing 83-85% was obtained from both of the explants cultured on MS medium containing 2.0 mgl-1NAA + 0.05 mgl-1BAP. Somatic embryogenesis and shoot regeneration was achieved after transferring the calli to MS medium supplemented with BAP, GA3, NAA and Zeatin. Cotyledon derived calli showed better performance (87%) for regeneration than that of midrib (82%) when sub cultured on MS medium having 2.0 mgl-1 Zeatin + 1.0 mgl-1 BAP. For root induction, MS + 3.0 mgl-1 IBA was proved to be better treatment for average number (14-15) and mean length (12 cm) of roots than those of other treatments. Key words: Eggplant; cotyledon; midrib; callus induction; somatic embryo J. bio-sci. 14: 1-9, 2006


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 694c-694
Author(s):  
Sung-Do Oh ◽  
Won-Seob Song ◽  
Man-Sang Lee

From one week through 7 weeks after artificial pollination, immature ovules of yooza(Citrus junos Sieb. et Tanaka) were excised and cultured in vitro on MT media. Even though there was only a little difference in percentage of somatic embryo formation depending upon the time of excision, immature ovules of 4-week-old showed the highest ratio of somatic embryo formation without callus outgrowth. Various growth regulators or other stimulators were added to the MT media to increase the somatic embryogenesis, In general, BAP was more effective than 2,4-D for somatic embryo formation and the combinations of 0.01mg/l 2,4-D and 0,01 or 0.1mg/l BAP were particularly effective in stimulating somatic embryo formation. When 500mg/l malt extract was added to the medium, the percentage of somatic embryo formation increased reaching as high as 86.7%. Plant regeneration from somatic embryos reached to 66.7% on the medium containing 1.0mg/l zeatin. Isozyme banding patterns were also analyzed to confirm the variations of characteristics of the plantlets derived from direct somatic embryos.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1378-1380 ◽  
Author(s):  
C.K. Kim ◽  
J.Y. Oh ◽  
J.D. Chung ◽  
A.M. Burrell ◽  
D.H. Byrne

Somatic embryogenesis was initiated from in vitro-grown leaf explants of rose using an induction period of 4 weeks on MS basal medium supplemented with auxin followed by several subcultures on MS basal medium with cytokinin. `4th of July' showed the highest regeneration frequency (24.4%) on 5.3 μm NAA followed by culture on medium containing 18.2 μm zeatin. `Tournament of Roses' produced somatic embryos when cultured for 4 weeks on medium containing dicamba, 2.3 μm followed by three subcultures on medium containing 18.2 μm zeatin. Embryogenic callus matured on MS media containing 0.5 μm NAA, 6.8 μm zeatin, and 2.9 μm GA3. Long-term cultures were established for both cultivars. Somatic embryos germinated on MS medium containing IBA and BA. Silver nitrate (58.8 μm) enhanced shoot formation and germination of somatic embryos. Plants derived from somatic embryos were acclimatized and successfully established in the greenhouse.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1066D-1067
Author(s):  
Jae-Dong Chung ◽  
Hong-Yul Kim ◽  
Jung-Hae Suh ◽  
Oh-Chang Kwon ◽  
Chang-kil Kim

Somatic embryo formation was observed on thin-sectioned leaf explants within 3 weeks of culture from two Phalaenopsis hybrids—Phalaenopsis Hwafeng Redjewell `Ching Ruey' Phalaenopsis Chingruey's Giant Ching Ruey' (R×R), and Phalaenopsis Formosa Best Girl Ching Ruey' Depts. Lih Jiang Beauty `S 566' (WR×WR). Frequency of somatic embryo formation was higher in hybrid WRxWR than R×R and optimal concentration of TDZ for the induction of somatic embryos was 9.08 μM. In (WR×WR) embryo proliferation was simultaneously observed after transferring the explants with somatic embryo clumps onto PGR-free half-strength MS medium. Six months after initiation, the culture plantlets were produced. This is the first report on somatic embryogenesis induced directly from the leaf explants using TDZ in Phalaenopsis.


2019 ◽  
Vol 49 (7) ◽  
Author(s):  
João Alves Ferreira Pereira ◽  
Laís Tomaz Ferreira ◽  
Marciana Bizerra de Morais ◽  
Cláudia Ulisses

ABSTRACT: The aim of the present study was to induce the formation of somatic embryos in protocorms from Phalaenopsis Classic Spotted Pink hybrids at two physiological maturation stages, namely: 80 and 120 days after seed inoculation (DASI). Protocorms were inoculated in ½ MS medium supplemented with 0.1 mg L-1 ANA and 3 mg L-1 TDZ. Protocorms were inoculated 120 days after sowing were more developed at the 15th cultivation day due to the formation of pro-embryogenic structures. It was possible seeing the formation of globular- and torpedo-stage somatic embryos at the 30th day of cultivation in somatic embryogenesis (SE) induction medium. The protocorms inoculated at the 80th DASI did not formed somatic embryos; they oxidized 20 days after cultivation in SE-induction medium. The formation of somatic embryos happened directly on the explant, thus characterizing a direct somatic embryogenesis. The embryos converted into plants when the somatic embryos were transferred to the nutrient medium containing no growth regulator. Therefore, it was concluded that the somatic embryos induction from protocorms 120 days after sowing was positive, since the embryos were able to become plants and presented vegetative organs with morphological traits similar to those of the matrix plant.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 568B-568a
Author(s):  
Lianghong Chen ◽  
Ajmer S. Bhagsari ◽  
Soon O. Park ◽  
Sarwan Dhir

This study was carried out to optimize conditions for plant regeneration of sweetpotato [Ipomoea batatas (L.) Lam] using shoot tips, petioles, and leaves of Selection 75-96-1 as explants in Murashige and Skoog (MS) with several growth regulators at different levels. Callus initiation and callus proliferation media were 9.0 μm 2,4-dichlorophenoxyacetic acid (2,4-D) and 9.0 μm 2,4-D + 1.1 μm N6-benzyladenine (6-BA) in protocol I; 8.1 μm α-naphthaleneacetic acid (NAA) + 1.2 μm kinetin (KIN) and 5.4 μm NAA + 4.6 μm KIN in protocol II; 0.9 μm 2,4-D, and 0.9 μm 2,4-D + 1.2 μm N-isopenylamino purine (2iP) in protocol III; NAA (8.1 μm) + KIN (1.2 μm) and 2,4-D (0.9 μm) + 2ip (1.2 μm) in protocol IV, respectively. In protocol I and II, shoot tip, petiole, and leaf were used, but only petiole and leaf in protocol III and IV. In the protocol I and II, somatic embryos were obtained only from shoot tip explants; in protocol III and IV, only from petioles. The frequencies of somatic embryo development were 33.3% in protocol I, 42.1% in protocol II, 21.2% in protocol III, and 10.3% in protocol IV, respectively. The leaf explants failed to produce somatic embryos in all the experiments. In protocol I, somatic embryogenesis occurred through the well-known sequence of globular-, heart-shaped-, torpedo-, and cotyledon-type embryos. However, in protocol II, the structures resembling plumule and radicle were observed before the emergence of torpedo/cotyledon type embryo clusters. The somatic embryogenesis in protocol III and IV was similar to that in protocol I. Growth regulators influenced somatic embryo development. Further, this study showed that explant resource and growth regulators affected the frequency of plant regeneration in sweetpotato.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 561a-561
Author(s):  
Mary W. George ◽  
Robert R. Tripepi

Previous reports of somatic embryogenesis on rose tissues involved an embryogenic callus stage with either a complicated multi-step process or low numbers of embryos being produced. We have produced somatic embryos without a callus stage from leaf explants of the cut rose cultivar `Golden Emblem' by using a two step process. Explants were obtained from microshoots of `Golden Emblem' that had been in culture for three years. All experiments were repeated twice. When explants were maintained on Murashige and Skoog (MS) with 0.4 μM NAA and 0.4 μM kinetin for 10 weeks, 10% or less of the explants produced somatic embryos. Keeping the explants on the NAA/kinetin medium for two weeks, then switching to medium with 0, 0.5, 1.0, or 10.0 μM kinetin for the remaining 8 weeks failed to increase embryo production. Decreasing the time the explants were on the NAA/kinetin medium to 8 or 12 days, and then placing explants on MS medium with 1.0 μM kinetin increased somatic embryo production to a maximum of 25%. By limiting the length of time the rose leaf explants were exposed to auxin, direct somatic embryo production was increased.


2017 ◽  
Vol 19 (3) ◽  
pp. 41-48
Author(s):  
Ay N.V. ◽  
Duy M.V. ◽  
Baatartsogt O. ◽  
Altantsetseg Kh. ◽  
Enkhchimeg V.

In vitro seedling offspring of Plantago camtschatica Link was investigated regarding induction of somatic embryogenesis in petiole/leaf explants from shoot tissue and shoot proliferation. The aim of study was to investigate the medium supplemented with suitable concentration of plant growth regulators in order to induce somatic embryogenesis, plant regeneration and shoot multiplication. The results showed that: (i) Petiole/young leaf of immature stem induced the highest ratio of calli induction and compact calli formation on MS medium supplemented with 1 mgL-1 2,4-D and 0.5 mgL-1 BA; (ii) From created calli, somatic embryogenesis could be induced on MS medium supplemented with 1 mgL-1 TDZ or 1 mgL-1 TDZ and 0.5 mgL-1 NAA; (iii) MS medium supplemented with 5-7 mgL-1 BA shown the most effective on shoot development stage; (iv) Rooting of shoot was the best on 1/2 solid MS medium with activated charcoal (2 gL-1), and 0.5-4 mgL-1 NAA; and (v) acclimatization of micropropagated plants could be planted in plastic pots containing a mixture of decayed straw : rice husk ashes, (1:1, v/v), sand : soil (1:1, v/v) or soil, showed a high survival rate and most seedlings grew normally.


1992 ◽  
Vol 70 (6) ◽  
pp. 1186-1192 ◽  
Author(s):  
R. Gill ◽  
Praveen K. Saxena

An efficient procedure has been developed for inducing direct somatic embryogenesis, organogenesis, and regeneration of plants from tissue cultures of peanut (Arachis hypogaea L.). Thin transverse sections of the cotyledons and juvenile leaves were cultured on Murashige and Skoog medium supplemented with N6-benzylaminopurine (BAP) or a substituted phenylurea, thidiazuron (TDZ). Somatic embryos or shoot buds differentiated from cut surfaces of the cotyledons and midrib region of the leaves. The application of BAP induced differentiation of shoot buds whereas the treatment with TDZ resulted in the production of somatic embryos. Somatic embryos developed into plants after subculturing on a basal meduim. Agar-solidified medium was found to be superior to the liquid medium for the development of embryos and shoot buds. The procedure of TDZ-induced somatic embryogenesis and plant regeneration was successfully applied to three genotypes of peanut. A distinct feature of this study is the induction of the morphogenic competence in cultures of seedling expiants of peanut that so far have remained recalcitrant to somatic embryogenesis in vitro. Key words: peanut, Arachis hypogaea, shoot regeneration, somatic embryogenesis, thidiazuron, plant regeneration.


Sign in / Sign up

Export Citation Format

Share Document