scholarly journals Rain Garden Filter Bed Substrates Affect Stormwater Nutrient Remediation

HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 645-652 ◽  
Author(s):  
Rebecca L. Turk ◽  
Helen T. Kraus ◽  
Ted E. Bilderback ◽  
William F. Hunt ◽  
William C. Fonteno

Twelve rain gardens were constructed to analyze the effectiveness of three different filter bed substrates to support plant growth and remove nutrients from urban stormwater runoff. The filter bed substrates included a sand-based substrate (sand) composed of (v/v/v) of 80% washed sand, 15% clay and silt fines, and 5% pine bark; a soil-based substrate (soil) composed of (v/v) 50% sandy loam soil and 50% pine bark; and a slate-based substrate (slate) composed of (v/v) 80% expanded slate and 20% pine bark. Coarse particles (6.3 to 2.0 mm) in the soil-based substrate created a large-pore network that conducted stormwater more quickly into and through the rain garden than slate or sand as evidenced by the high infiltration and saturated hydraulic conductivity values. Sand had good overall retention of pollutants except nitrogen (N) possibly as a result of the very small percentage (5%) of organic matter and low cation exchange capacity (CEC). Soil had the lowest remediation of phosphorus (P) and highest concentration of P in its effluent and was similar in N removal efficiency to slate. Slate had the best retention of N and P. Overall, all three substrates functioned in reducing the quantity of pollutants in urban stormwater runoff; yet, the impact of substrate on remediation appeared to lessen by Season 2 because there were few differences between substrate in the effluent nutrient concentration. Substrate did not affect shoot or root growth. Eleven of the 16 species (B. nigra, B. ‘Duraheat’, M. virginiana, M. ‘Sweet Thing’, I. virginica, I. ‘Henry’s Garnet’, J. effusus, P. ‘Shenandoah’, H. angustifolius, H. ‘First Light’, and E. purpureum subsp. maculatum) grew well in the rain gardens and could be used as rain garden plants.

2015 ◽  
Vol 40 (3) ◽  
pp. 480-492 ◽  
Author(s):  
Geoff J. Vietz ◽  
Christopher J. Walsh ◽  
Tim D. Fletcher

The urban stream syndrome is an almost universal physical and ecological response of streams to catchment urbanization. Altered channel geomorphology is a primary symptom that includes channel deepening, widening and instability. While the common approach is to treat the symptoms (e.g. modifying and stabilizing the channel), many stream restoration objectives will not be achieved unless the more vexing problem, treating the cause, is addressed in some way. Research demonstrates that the dominant cause of geomorphic change in streams in urban catchments is an altered flow regime and increase in the volume of stormwater runoff. Thus, managers can choose to treat the symptoms by modifying and controlling the channel to accommodate the altered flow regime, or treat the cause by modifying the flow regime to reduce the impact on channel morphology. In both cases treatments must, at the least, explicitly consider hydrogeomorphology—the science of the linkages between various hydrologic and geomorphic processes—to have a chance of success. This paper provides a review of recent literature (2010 to early 2015) to discuss fluvial hydrogeomorphology in the management of streams subject to urbanization. We suggest that while the dominant approach is focused on combating the symptoms of catchment urbanization (that we refer to as channel reconfiguration), there is increasing interest in approaches that attempt to address the causes by using stormwater control measures at a range of scales in the catchment (e.g. flow-regime management). In many settings in the oft-constrained urban catchment, effective management of stream morphology may require multiple approaches. To conclude, we identify five research areas that could inform urban hydrogeomorphology, one of the most challenging of which is the extent to which the volume of excess urban stormwater runoff can be reduced to mitigate the impact on stream geomorphology.


2013 ◽  
Vol 726-731 ◽  
pp. 1801-1804 ◽  
Author(s):  
Shu Min Wang ◽  
Hui Yu

In order to know the characteristic of spatial and temporal distribution of heavy metal concentrations in urban stormwater runoff, rainfall runoff from impervious underlying surfaces in urban region was observed during rain events. Results showed that during the precipitation process, heavy metal concentrations decreased gradually temporally (except Cd); concentrations of Fe, Cu and Zn meet Class III standard of Environmental Quality Standards for Surface Water in terminal runoff, but concentrations of Cd and Pb go beyond this standard far. Heavy metal concentrations in runoff from different types of landuses were significantly different. The arithmetic average concentrations of Fe, Cd, Cu and Zn in stormwater runoff from roof (e.g.,34.4mg/L, 0.15mg/L, 1.25mg/L and 1.23mg/L, respectively) were obviously higher than that in stormwater runoff from road (e.g., 11.8mg/L, 0.05mg/L, 0.13mg/L and 0.69mg/L, respectively).


2021 ◽  
Author(s):  
Qiyue Hu ◽  
Song Zhu ◽  
Zanfang Jin ◽  
Aijing Wu ◽  
Xiaoyu Chen ◽  
...  

Abstract Increased nitrogen (N) from urban stormwater runoff aggravates the deterioration of aquatic ecosystems as urbanisation develops. In this study, the sources and transport of nitrate (NO3−) in urban stormwater runoff were investigated by analysing different forms of N, water isotopes (δD-H2O and δ18O-H2O), and NO3− isotopes (δ15N-NO3− and δ18O-NO3−) in urban stormwater runoff in a residential area in Hangzhou, China. The results showed that the concentrations of total N and nitrate N in road runoff were higher than those in roof runoff. Moreover, high concentrations of dissolved organic N and particulate N in road runoff led to significantly different TN concentrations in road runoff (mean: 3.76 mg/L) and roof runoff (mean: 1.23 mg/L). The high δ18O-NO3− values (mean: 60 ± 13.1‰) indicated that atmospheric deposition was the predominant NO3− source in roof runoff, as confirmed by the Bayesian isotope mixing model (SIAR model), contributing 83.6–97.8% to NO3−. The SIAR model results demonstrated that atmospheric deposition (34.2–91.9%) and chemical fertilisers (6.27–54.3%) were the main NO3− sources for the road runoff. The proportional contributions from soil and organic N were smaller than other sources in both the road runoff and roof runoff. For the initial period, the NO3− contributions from atmospheric deposition and chemical fertilisers were higher and lower, respectively, than those in the middle and late periods in road runoff during storm events 3 and 4, while an opposite trend of road runoff in storm event 7 highlighted the influence of short antecedent dry weather period. It was suggested that reducing impervious areas and more effective management of fertiliser application in urban green land areas were essential to minimize the presence of N in urban aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document