scholarly journals Genome-wide Identification and Expression Analysis of NAC Transcription Factor Family Genes during Fruit and Kernel Development in Siberian Apricot

Author(s):  
Wanyu Xu ◽  
Chen Chen ◽  
Ningning Gou ◽  
Mengzhen Huang ◽  
Tana Wuyun ◽  
...  

The NAC (NAM, ATAF1/2, and CUC2) family is a group of plant-specific transcription factors that have vital roles in the growth and development of plants, and especially in fruit and kernel development. This study aimed to identify members of the NAC gene (PsNACs) family and investigate their functions in siberian apricot (Prunus sibirica). A total of 102 predicted PsNAC proteins (PsNACs) were divided into 14 clades and the genes were mapped to the eight chromosomes in siberian apricot. The PsNACs of the same clade had similar structures. A synteny analysis showed that the PsNACs had close relationships with the NAC genes of japanese apricot (Prunus mume). An expression pattern analysis of the PsNACs revealed many differences in various tissues and at different stages of fruit and kernel development. All eight PsNACs in clade XI have crucial roles in fruit and kernel development. Seven PsNACs (PsNACs 18, 64, 23, 33, 9, 4, and 50) in clades I, III, VI, VII, and XIII are related to fruit development. Eight PsNACs (PsNACs 6, 13, 46, 51, 41, 67, 37, and 59) in clades I, II, V, VIII, and XIII are involved in fruit ripening. Five PsNACs (PsNACs 6, 94, 41, 32, and 17) in clades I, IV, V, VII, and XI regulated the rapid growth of the kernel. Four PsNACs (PsNACs 50, 4, 67, and 84) in clades I, III, V, and XIII affected the hardening of the kernel. Four PsNACs (PsNACs 17, 82, 13, and 51) in clades II, XI, and IX acted on kernel maturation. We have characterized the NAC genes in siberian apricot during this study. Our results will provide resources for future research of the biological roles of PsNACs in fruit and kernel development in siberian apricot.

Author(s):  
Koji Numaguchi ◽  
Takashi Akagi ◽  
Yuto Kitamura ◽  
Ryo Ishikawa ◽  
Takashige Ishii

SummaryDomestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity.We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (P. armeniaca), plum (P. salicina), and peach (P. persica). Based on their genome-wide single nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume.Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution.These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selection.


Sign in / Sign up

Export Citation Format

Share Document