scholarly journals FORMULATION OF DESIGN TASKS OF TOWED UNDERWATER VEHICLES CREATION FOR SHALLOW WATER AND AUTOMATION OF THEIR MOTION CONTROL

2019 ◽  
Vol 2 ◽  
pp. 30-42 ◽  
Author(s):  
Oleksandr Blintsov ◽  
Volodymyr Sokolov ◽  
Pavel Kucenko

The towed underwater system is one of the fixed assets of the study of water areas. The effectiveness of its application depends on the characteristics laid at the design stage. The main task of the towed underwater vehicle (TUV) is the motion of technological equipment. Therefore, it is important to ensure the specified dynamic properties of the unit and automate the control of its motion. In the paper the typical forms of the unit are analyzed, the features of their control at small depths are set. TUV control is carried out in conditions of uncertainty. Therefore, the design of an automatic control system (ACS) for its motion is proposed to be carried out using the appropriate synthesis method – the method of minimizing local functionals. The control law contains integral components and, under the constraints of control actions, generates the problem of integral saturation. To eliminate the integral saturation in the work, the condition integration method is improved. On its basis, the control law and the structure of the controller of high dynamic accuracy of a second-order nonlinear object are synthesized. It is the basis for the synthesis of ACS controlled degrees of freedom of the underwater vehicle in conditions of uncertainty. Usually TUVs contain two degrees of mobility. Translational motions of the unit are generated by changing its angular orientation. The paper synthesizes TUV controllers of pitch and roll based on the control law of the second order. Each control signal of the unit can affect both the roll and the pitch of the unit, which leads to decrease in the quality of control in general. To coordinate the work of controllers, a method is proposed, which is based on adjusting the initial conditions of the controller with greater error. On its basis, the automatic control system of the rotational motion of the unit is synthesized. It provides high dynamic precision control of two-dimensional rotational motion of the unit in uncertainty and is the basis for the ACS synthesis of its translational motion in space.

Author(s):  
Boris Grasiani

This paper proposes to adjust the controller using a graph-analytical method in the complex plane. The various configurations regarding the location of zeros and poles to those of the object are also considered. Adjusted controllers are surveyed, such as they are integrated into control systems, and some of the quality indicators of an automatic control system are analyzed.


2018 ◽  
Vol 13 (4) ◽  
pp. 107-111
Author(s):  
E.V. Denisova ◽  
M.A. Chernikova

In the paper, the model of a servo piston of a fuel metering unit based on a matrix approach using neural networks is considered. To develop the model of a servo piston, the dependence of the initial piston deviation on the control signal for different values of the nozzles is used. This dependence is represented in the form of a matrix and is used in the neural network. This approach allows describing the movement of the servo piston with a sufficient degree of accuracy. As a record of change squares adjustment of the nozzles is a source of parametric uncertainty in the operation of the automatic control system can lead to a drop in the quality of control, such accounting is relevant. The model of the servo piston is proposed to be used in the structure of the automatic control system for a gas turbine engine and for semi-natural stands.


Sign in / Sign up

Export Citation Format

Share Document