SURVEY AND ADJUSTMENT OF CONTROLLER OF A GRAPH-ANALYTICAL METHOD TO A SECOND ORDER OBJECT

Author(s):  
Boris Grasiani

This paper proposes to adjust the controller using a graph-analytical method in the complex plane. The various configurations regarding the location of zeros and poles to those of the object are also considered. Adjusted controllers are surveyed, such as they are integrated into control systems, and some of the quality indicators of an automatic control system are analyzed.

2012 ◽  
Vol 459 ◽  
pp. 75-78
Author(s):  
Lian Jun Hu ◽  
Xiao Hui Zeng ◽  
Gui Xu Chen ◽  
Hong Song

An automatic control system for multi-axes motions based on multi-CPU embedded systems is proposed in the paper, in order to overcome insufficiencies of available multi-axes automatic dispensing control systems. It is shown from experimental results that expected control objectives for multi-axes motions are achieved.


2016 ◽  
Vol 62 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Michal Laskawski ◽  
Miroslaw Wcislik

Abstract The paper deals with an analysis of automatic control system with continuous and discrete PID controllers. A method of tuning the parameters of the continuous controller is presented, which is optimal according to the ITAE criterion. The behavior of control systems with discrete controllers whose parameters were tuned using the mentioned method are described. The impact of changes in the sampling period of controlled signal on the control quality is shown. Changes of the values of optimal parameters of discrete PID controllers in relation to changes of the sampling rate of controlled signal are characterized.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
O. Titlova ◽  
V. Khobin ◽  
O. Titlov

The general concept of the automatic control systems constructing for increasing the efficiency of the artificial cold production process in the absorption refrigerating units is substantiated. The described automatic control systems provides necessary degree of the ammonia vapor purification from the water in all absorption refrigerating units modes and minimizes heat loss from the dephlegmator surface.


Author(s):  
Igor Parkhomey ◽  
Juliy Boiko ◽  
Nataliia Tsopa ◽  
Iryna Zeniv ◽  
Oleksander Eromenko

Author(s):  
Ivan Marynych ◽  
Olga Serdiuk

The subject of the research is automatic control system modeling features for tensioning of stands roughing group, which takes into account changes in the rolling speed at exit of the previous stand and entrance to the next stand. Control systems for high-speed rolling on section mills are the most critical systems, since the trouble-free operation of rolling mill largely depends on their work. Rolling speed control is understood to mean tension regulation in the roughing group of stands and stabilization of the rolling loop in the finishing groups. The influence of such technological factors as uneven heating of blanks, change in the crimping mode in stands, etc. leads to the appearance of tension or back-up forces, deviation of rolled loop from the specified values. Tension rolling, in contrast to loop rolling, is a stable rolling mode. However, (at significant values of tension in the rolled products) such a rolling mode leads to different thicknesses of the finished product. The loop rolling mode is an unstable mode and is impossible without automatic control systems. Both in the tension rolling mode and in the free rolling mode with a loop, it is necessary to study automatic control systems in order to determine the possibilities of compensating for disturbing influences and obtaining rolled products of the given accuracy. Therefore, the main task of the automatic control system is to maintain the rolling mode with the lowest possible tension. To achieve this goal, direct control of the tension of the rolled strip with modern technical means is rather difficult, and the operation of tension control systems is based on indirect methods of measuring it, and the study of the system efficiency is reduced to modeling the process itself. The developed model consists of three stands and two inter-stand spaces, since it takes into account changes in rolling speed at the exit of previous stand and the entrance to the next stand. It is due to this that adequate simulation results are obtained that are close to the real rolling process. Keywords: automation, rolls, stand, inter-stand spacing, modeling, loop tension, rolling mill, roughing group.


2020 ◽  
Vol 26 (1) ◽  
pp. 27-40
Author(s):  
Максим Валерійович Левінський ◽  
◽  
Валерій Михайлович Левінський ◽  
◽  
◽  
...  

opicality. Modern vessel’s course automatic control systems allow to reduce ship’s running time and fuel consumption during voyage compared to manual operation. Effectiveness of their implementation depends on the timely adjustment of the controller parameters following the changes in the vessel’s dynamics, which requires usage of adequate models and qualification of the maintenance stuff.


2019 ◽  
Vol 2 ◽  
pp. 30-42 ◽  
Author(s):  
Oleksandr Blintsov ◽  
Volodymyr Sokolov ◽  
Pavel Kucenko

The towed underwater system is one of the fixed assets of the study of water areas. The effectiveness of its application depends on the characteristics laid at the design stage. The main task of the towed underwater vehicle (TUV) is the motion of technological equipment. Therefore, it is important to ensure the specified dynamic properties of the unit and automate the control of its motion. In the paper the typical forms of the unit are analyzed, the features of their control at small depths are set. TUV control is carried out in conditions of uncertainty. Therefore, the design of an automatic control system (ACS) for its motion is proposed to be carried out using the appropriate synthesis method – the method of minimizing local functionals. The control law contains integral components and, under the constraints of control actions, generates the problem of integral saturation. To eliminate the integral saturation in the work, the condition integration method is improved. On its basis, the control law and the structure of the controller of high dynamic accuracy of a second-order nonlinear object are synthesized. It is the basis for the synthesis of ACS controlled degrees of freedom of the underwater vehicle in conditions of uncertainty. Usually TUVs contain two degrees of mobility. Translational motions of the unit are generated by changing its angular orientation. The paper synthesizes TUV controllers of pitch and roll based on the control law of the second order. Each control signal of the unit can affect both the roll and the pitch of the unit, which leads to decrease in the quality of control in general. To coordinate the work of controllers, a method is proposed, which is based on adjusting the initial conditions of the controller with greater error. On its basis, the automatic control system of the rotational motion of the unit is synthesized. It provides high dynamic precision control of two-dimensional rotational motion of the unit in uncertainty and is the basis for the ACS synthesis of its translational motion in space.


2020 ◽  
pp. 61-70
Author(s):  
O. Sinyavsky ◽  
◽  
V. Kisten ◽  
N. Solomko ◽  
◽  
...  

Currently, nonlinear pulse automatic control systems have become widespread, so there is a need to develop methods for their study. Pulse regulators are created on the basis of positional with the addition of pulse breakers. They can be represented as a non-linear element, a simple impulse element and a forming circle connected in series. The aim of the study was to determine the optimal parameters for setting up a relay-pulse controller for an astatic object with a delay. When determining the parameters of adjustment of the relay-pulse regulator for the quality indicator in the optimization of the automatic control system was taken as the total square deviation. Applying this criterion, the pulse duration of the regulator was determined. The time quantization interval is determined from the condition of ensuring the absolute stability of the automatic control system. Analytical dependences were obtained to determine the pulse duration and time quantization interval, which make it possible to determine the debugging parameters of the relay-pulse controller for a first-order astatic object with a delay. This ensures a minimum control error, and the control system is stable.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Sudirman Sirait ◽  
Dwi Santoso ◽  
Saat Egra

ABSTRACT One effort to increase irrigation efficiency is the use of solar power-based automatic control systems. This technological innovation was designed by utilizing digital technology, microcontroller and sensor network. This automatic control system operates based on the value of soil moisture as the lower set point value and the upper set point value to set the pump on/off. The aims of this research are to develop a solar-powered automatic control system with reference to the control of soil moisture for set on/off the pump and can keep the soil moisture from the water capacity. The stages of the research are hardware design of solar-powered control systems, design of automatic control system software, design of sprinkler irrigation networks, testing and data analysis. The results showed that the total power to operate an automatic sprinkler irrigation system of 67.0 Watt and can reduce battery consumption of 234.7 Watt. The use of a 30 Wp solar panel unit is able to meet the power needed for the automatic control system during the experiment. Keywords: automatic control system, microcontroller, solar power, sprinkler irrigation ABSTRAK Salah satu usaha untuk meningkatkan efisiensi irigasi adalah penggunaan sistem kontrol otomatis berbasis tenaga surya. Inovasi teknologi ini dirancang dengan memanfaatkan teknologi digital, mikrokontroller dan jaringan sensor. Sistem kontrol otomatis ini beroperasi berdasarkan nilai kelengasan tanah sebagai nilai set point bawah dan set point atas untuk mengatur on/off pompa. Penelitian ini bertujuan untuk mengembangkan sistem kontrol otomatis bertenaga surya dengan acuan kendali kelengasan tanah untuk pengaturan on/off pompa dan menjaga kondisi tanah dari kapasitas lapang. Tahapan penelitian yaitu perancangan hardware sistem kontrol otomatis bertenaga surya, perancangan software sistem kendali, perancangan jaringan irigasi sprinkler, pengujian dan analisis data. Hasil percobaan menunjukkan total daya untuk mengoperasikan sistem irigasi sprinkler otomatis 67,0 Watt dan menghemat penggunaan daya baterai sebesar 234,7 Watt. Penggunaan 1 unit panel surya 30 Wp mampu mencukupi daya yang dibutuhkan untuk mengoperasikan sistem kontrol otomatis selama percobaan. Kata kunci: irigasi sprinkler, mikrokontroller, sistem kontrol otomatis, tenaga surya


Sign in / Sign up

Export Citation Format

Share Document