The application of Hermite polynomials to risk allocation

2016 ◽  
Vol 18 (3) ◽  
pp. 77-110
Author(s):  
Francois Buet-Golfouse ◽  
Anthony Owen
Urban Studies ◽  
2021 ◽  
pp. 004209802110178
Author(s):  
Frances Brill

This article argues that urban governance, and academic theorisations of it, have focused on the role and strategies of real estate developers at the expense of understanding how investors are shaped by regulatory environments. In contrast, using the case of institutional investment in London’s private rental housing (Build to Rent), in this article I argue that unpacking the private sector and the development process helps reveal different types of risk which necessitate variegated responses from within the real estate sector. In doing so, I demonstrate the complexities of the private sector in urban development, especially housing provision, and the limitations of a binary conceptualised around pro- and anti-development narratives when discussing planning decisions. Instead, I show the multiplicity of responses from within the private sector, and how these reflect particular approaches to risk management. Uncovering this helps theorise the complexities of governing housing systems and demonstrates the potential for risk-based urban governance analysis in the future.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1168
Author(s):  
Cheon Seoung Ryoo ◽  
Jung Yoog Kang

Hermite polynomials are one of the Apell polynomials and various results were found by the researchers. Using Hermit polynomials combined with q-numbers, we derive different types of differential equations and study these equations. From these equations, we investigate some identities and properties of q-Hermite polynomials. We also find the position of the roots of these polynomials under certain conditions and their stacked structures. Furthermore, we locate the roots of various forms of q-Hermite polynomials according to the conditions of q-numbers, and look for values which have approximate roots that are real numbers.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yiyang Jia ◽  
Jacobus J. M. Verbaarschot

Abstract We analyze the spectral properties of a d-dimensional HyperCubic (HC) lattice model originally introduced by Parisi. The U(1) gauge links of this model give rise to a magnetic flux of constant magnitude ϕ but random orientation through the faces of the hypercube. The HC model, which also can be written as a model of 2d interacting Majorana fermions, has a spectral flow that is reminiscent of Maldacena-Qi (MQ) model, and its spectrum at ϕ = 0, actually coincides with the coupling term of the MQ model. As was already shown by Parisi, at leading order in 1/d, the spectral density of this model is given by the density function of the Q-Hermite polynomials, which is also the spectral density of the double-scaled Sachdev-Ye-Kitaev model. Parisi demonstrated this by mapping the moments of the HC model to Q-weighted sums on chord diagrams. We point out that the subleading moments of the HC model can also be mapped to weighted sums on chord diagrams, in a manner that descends from the leading moments. The HC model has a magnetic inversion symmetry that depends on both the magnitude and the orientation of the magnetic flux through the faces of the hypercube. The spectrum for fixed quantum number of this symmetry exhibits a transition from regular spectra at ϕ = 0 to chaotic spectra with spectral statistics given by the Gaussian Unitary Ensembles (GUE) for larger values of ϕ. For small magnetic flux, the ground state is gapped and is close to a Thermofield Double (TFD) state.


Sign in / Sign up

Export Citation Format

Share Document