Grain Yields, Evapotranspiration, and Water Use Efficiency of Grain Sorghum under Different Cultural Practices 1

1959 ◽  
Vol 51 (6) ◽  
pp. 339-343 ◽  
Author(s):  
Paul L. Brown ◽  
W. D. Shrader
2018 ◽  
Vol 156 (5) ◽  
pp. 628-644 ◽  
Author(s):  
E. Pohanková ◽  
P. Hlavinka ◽  
M. Orság ◽  
J. Takáč ◽  
K. C. Kersebaum ◽  
...  

AbstractIn the current study, simulations by five crop models (WOFOST, CERES-Barley, HERMES, DAISY and AQUACROP) were compared for 7–12 growing seasons of spring barley (Hordeum vulgare) at three sites in the Czech Republic. The aims were to compare how various process-based crop models with different calculation approaches simulate different values of transpiration (Ta) and evapotranspiration (ET) based on the same input data and compare the outputs of these simulations with reference data. From the outputs of each model, the water use efficiency (WUE) from Ta (WUETa) and from actual ET (WUEETa) was calculated for grain yields and above-ground biomass yield. The results of the first part of the study show that the model with the Penman approach for calculating ET simulates lower actual ET (ETa) sums, at an average of 250 mm during the growing season, than other models, which use the Penman–Monteith approach and simulate 330 mm on average during the growing season. In the second part of the current study, WUE reference values in the range 1.9–2.4 kg/m3were calculated for spring barley and grain yield. Values of WUETa/WUEETacalculated from the outputs of individual models for grain yields and above-ground biomass yields ranged from 2.0/1.0 to 5.9/3.8 kg/m3with an average value of 3.2/2.0 kg/m3and from 3.9/2.1 to 10.5/6.8 kg/m3with an average value of 6.5/4.0 kg/m3, respectively. The results confirm that the average values of all models are nearest to actual values.


1997 ◽  
Vol 37 (6) ◽  
pp. 667 ◽  
Author(s):  
W. M. Strong ◽  
R. C. Dalal ◽  
J. E. Cooper ◽  
J. A. Doughton ◽  
E. J. Weston ◽  
...  

Summary. Continuous cereal cropping in southern Queensland and northern New South Wales has depleted native soil nitrogen fertility to a level where corrective strategies are required to sustain grain yields and high protein content. The objective of this study was to examine the performance of chickpea in chickpea–wheat rotations in terms of yields, water use and N2 fixation. The effects of sowing time and tillage practice have been studied. Chickpea grain yields varied from 356 kg/ha in 1995 to 2361 kg/ha in 1988; these were significantly correlated with the total rainfall received during the preceding fallow period and crop growth. Almost 48% of total plant production and 30% of total plant nitrogen were below-ground as root biomass. Mean values of water-use efficiency for grain, above-ground dry matter, and total dry matter were 5.9, 14.2 and 29.2 kg/ha.mm, respectively. The water-use efficiency for grain was positively correlated with the total rainfall for the preceding fallow and crop growth period although cultural practices modified water-use efficiency. The potential N2 fixation was estimated to be 0.6 kg nitrogen/ha.mm from 1992 total dry matter nitrogen yields assuming all of the nitrogen contained in chickpea was derived from the atmosphere. Sowing time had a much larger effect on grain yield and N2 fixation by chickpea than tillage practice (conventional tillage and zero tillage) although zero tillage generally increased grain yields. The late May–early June sowing time was found to be the best for chickpea grain yield and N2 fixation since it optimised solar energy use and water use, and minimised frost damage. Nitrogen fixation by chickpea was low, less than 40% nitrogen was derived from atmosphere, representing less than 20 kg nitrogen/ha.year. The potential for N2 fixation was not attained during this period due to below-average rainfall and high soil NO3-N accumulation because of poor utilisation by the preceding wheat crop. Increased soil NO3-N due to residual from fertiliser N applied to the preceding wheat crop further reduced N2 fixation. A simple soil nitrogen balance indicated that at least 60% of crop nitrogen must be obtained from N2 fixation to avoid continued soil nitrogen loss. This did not occur in most years. The generally negative soil nitrogen balance needs to be reversed if chickpea is to be useful in sustainable cropping systems although it is an attractive cash crop. Sowing time and zero tillage practice, possibly combined with more appropriate cultivars, to enhance chickpea biomass, along with low initial soil NO3-N levels, would provide maximum N2 fixation.


cftm ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. cftm2016.09.0062 ◽  
Author(s):  
Murali K. Darapuneni ◽  
Sangamesh V. Angadi ◽  
Sultan Begna ◽  
Leonard M. Lauriault ◽  
M.R. Umesh ◽  
...  

jpa ◽  
1999 ◽  
Vol 12 (3) ◽  
pp. 377-382 ◽  
Author(s):  
Todd P. Trooien ◽  
L. L. Buschman ◽  
P. Sloderbeck ◽  
K. C. Dhuyvetter ◽  
W. E. Spurgeon

2016 ◽  
Vol 154 (8) ◽  
pp. 1327-1342 ◽  
Author(s):  
T. K. DAS ◽  
K. K. BANDYOPADHYAY ◽  
RANJAN BHATTACHARYYA ◽  
S. SUDHISHRI ◽  
A. R. SHARMA ◽  
...  

SUMMARYIn search of a suitable resource conservation technology under pigeonpea (Cajanus cajanL.)–wheat (Triticum aestivumL.) system in the Indo-Gangetic Plains, the effects of conservation agriculture (CA) on crop productivity and water-use efficiency (WUE) were evaluated during a 3-year study. The treatments were: conventional tillage (CT), zero tillage (ZT) with planting on permanent narrow beds (PNB), PNB with residue (PNB + R), ZT with planting on permanent broad beds (PBB) and PBB + R. The PBB + R plots had higher pigeonpea grain yield than the CT plots in all 3 years. However, wheat grain yields under all plots were similar in all years except for PBB + R plots in the second year, which had higher wheat yield than CT plots. The contrast analysis showed that pigeonpea grain yield of CA plots was significantly higher than CT plots in the first year. However, both pigeonpea and wheat grain yields during the last 2 years under CA and CT plots were similar. The PBB + R plots had higher system WUE than the CT plots in the second and third years. Plots under CA had significantly higher WUE and significantly lower water use than CT plots in these years. The PBB + R plots had higher WUE than PNB + R and PNB plots. Also, the PBB plots had higher WUE than PNB in the second and third years, despite similar water use. The interactions of bed width and residue management for all parameters in the second and third years were not significant. Those positive impacts under PBB + R plots over CT plots were perceived to be due to no tillage and significantly higher amount of estimated residue retention. Thus, both PBB and PBB + R technologies would be very useful under a pigeonpea–wheat cropping system in this region.


2001 ◽  
Vol 52 (2) ◽  
pp. 279 ◽  
Author(s):  
J. R. Hirth ◽  
P. J. Haines ◽  
A. M. Ridley ◽  
K. F. Wilson

In a field experiment in north-eastern Victoria (average annual rainfall 598 mm), the impact of 2–4 years of lucerne growth on the following 3–4 crops was assessed. Controls of continuous lucerne, annual pasture, and continuous crop were compared with 5 lucerne–crop rotations. Above-ground biomass and water use efficiency of lucerne, annual pasture, and crops were assessed, as were the soil N status, grain yields, and profitability of crops after lucerne. Lucerne grew more slowly over the autumn–spring growing season (20 kg DM/ha.day) than did annual pastures and crops (41 and 58 kg DM/ha.day, respectively), while over the spring–autumn period, it grew at a mean 26 kg DM/ha.day. The summer growth rates of lucerne were, however, highly variable (1–52 kg DM/ha.day). Despite large changes in temperature and water availability over the year, the biomass water use efficiency (WUEB) of lucerne was similar over the winter and summer growth seasons (16 and 10 kg DM/ha.mm, respectively) and averaged 13 kg DM/ha.mm for the whole year. In contrast, the WUEB of wheat, canola, and annual pasture over their respective growth seasons averaged 36, 38, and 26 kg DM/ha.mm. When calculated over a whole year, however, they were much closer to lucerne at 23, 14, and 17 kg DM/ha.mm, respectively. Autumn removal of lucerne left soils initially low in mineral N (mean 82 kg N/ha.m depth in April) for the establishment of the first crop, but this was not reflected in the subsequent N contents of crop biomass and grain. Autumn mineral N concentrations peaked 1–2 years after lucerne removal (mean 141 kg N/ha.m depth). Yields of first crops after lucerne were strongly dependent on growing season rainfall. When sowing commenced in a wet year, they were similar to, or greater than, the control, but when sown in a dry year, were substantially lower. When sowing commenced in a wet year, lucerne supplied additional N for a minimum of 2 crops. At least 3 crops were supplied with lucerne N when cropping commenced in a dry year. The inclusion of 2–3 years of lucerne into a continuous cropping sequence only decreased annual profitability by $AU40/ha. This work shows that short phases of lucerne (minimum of 3 years) followed by 3–4 crops can provide economically viable options for farmers and produce better hydrological outcomes than current annual-plant based cropping systems.


2009 ◽  
Vol 55 (No. 11) ◽  
pp. 494-503 ◽  
Author(s):  
A. Yazar ◽  
F. Gökçel ◽  
M.S. Sezen

This paper evaluates the effect of partial root zone drying (PRD) and deficit irrigation (DI) strategies on yield and water use efficiency of the drip-irrigated corn on clay soils under the Mediterranean climatic conditions in Southern Turkey. Four deficit (PRD-100; PRD-75; PRD-50; and DI-50) and one full irrigation (FI) strategies based on cumulative evaporation (E<sub> pan</sub>) from class A pan at 7-day interval were studied. Full (FI) and deficit irrigation (DI-50) treatments received 100 and 50% of E<sub>pan</sub>, respectively. PRD-100, PRD-75 and PRD-50 received 100, 75 and 50% E<sub>pan</sub> value, respectively. The highest water use was observed in FI as 677 mm, the lowest was found in PRD-50 as 375 mm. PRD-100 and DI-50 resulted in similar water use (438 and 445 mm). The maximum grain yield was obtained from the FI as 10.40 t/ha, while DI-50 and PRD-100 resulted in similar grain yields of 7.72 and 7.74 t/ha, respectively. There was a significant difference among the treatments with respect to grain yields (<i>P</i> < 0.01). The highest water use efficiency (WUE) was found in PRD-100 as 1.77 kg/m<sup>3</sup>, and the lowest one was found in FI as 1.54 kg/m<sup>3</sup>.


Sign in / Sign up

Export Citation Format

Share Document