Effects of Planting Configuration on Water Use and Economics of Drip Irrigation Systems 1

1978 ◽  
Vol 70 (6) ◽  
pp. 951-954 ◽  
Author(s):  
S. D. Singh
Agriculture ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 187 ◽  
Author(s):  
Eros Borsato ◽  
Marco Martello ◽  
Francesco Marinello ◽  
Lucia Bortolini

Water scarcity is worsened by climate change. Water savings can be reached by improving irrigation efficiency both on farm and on water supply. To do that, the choice of the best irrigation technology is not always straightforward, because farmers need to renew and implement farm infrastructures for irrigation. This study compares three irrigation systems, one drip irrigation and two sprinkler (center pivot and hose-reel) systems, on environmental, economic, and energetic performance under irrigated and non-irrigated maize cropping. The study combines impact and efficiency indicators, addressing a sustainability analysis for the irrigation practice under the three different irrigation systems. The sustainability for the irrigation systems was assessed using water-related indicators (water use efficiency, irrigation water use efficiency, and water footprint), biomass (crop growth rate, relative growth rate, harvest index, and yield response factor), and energy indicators (energy footprint, performance, and energy cost footprint) for the environmental aspect; and the economic-based indicators (water productivity and economic water footprint) for the economic aspect. Main results address the center pivot system as the best solution for irrigation practice since it demonstrated higher economic and environmental performance. Moreover, maize under the pivot system allowed a higher biomass production, economic benefits, and water use efficiency.


2022 ◽  
Vol 32 (1) ◽  
pp. 39-46
Author(s):  
Jenny C. Moore ◽  
Brian Leib ◽  
Zachariah R. Hansen ◽  
Annette L. Wszelaki

Growers seeking alternatives to traditional polyethylene plastic mulch may use biodegradable plastic mulches (BDMs). However, plasticulture systems typically also use plastic drip tape underneath the mulch, which must be removed from the field and disposed of at the end of the season, making tilling the BDM into the soil more difficult and expensive. A potential solution to this dilemma may be to use other irrigation methods, such as overhead sprinklers, that could be more easily removed from the field and reused from year to year. At Knoxville, TN, in 2019 and 2020, we grew three cultivars of romaine lettuce (Lactuca sativa) on BDM with two irrigation systems (overhead sprinklers above the mulch and drip irrigation tape under the mulch) to compare water use, disease, and yield in these two irrigation systems. Water use was higher in overhead vs. drip irrigation in both years; however, the difference in water use was much smaller in 2019 due to higher rainfall amounts during the time period the lettuce was growing in the field (March to May). Disease incidence and severity were very low both years for both irrigation systems. There were no differences in marketable yield (number of heads) between irrigation treatment in 2019. In 2020, marketable yield by number was greater in the drip vs. overhead irrigation treatment. Unmarketable yield in 2019 was due to heads that were too small; in 2020, unmarketability was predominantly due to tipburn in overhead irrigated ‘Jericho’. Overall, marketable lettuce yield did not differ between irrigation treatments in 2019 and was similar for ‘Parris Island Cos’ in 2020. Although quantitative weed counts were not made, observations of weed pressure between rows showed that weed pressure was higher in overhead irrigated compared with drip irrigated subplots. This highlights the need to have a between-row weed management program in place. The results of this study suggest that with attention to cultivar and weed management, overhead irrigation could be a viable alternative to drip irrigation for lettuce production on BDM, especially for early spring lettuce when rainfall is historically more plentiful.


2014 ◽  
Vol 12 (1) ◽  
pp. 62-71
Author(s):  
M Musa ◽  
M Iqbal ◽  
M Tariq ◽  
FH Sahi ◽  
NM Cheema ◽  
...  

The experiment was conducted under plastic tunnel at Groundnut Research Station, Attock, Pakistan during 2006-2007 to 2008-2009 to determine water consumption by three off-season vegetables irrigated through drip and furrow systems, and to evaluate the comparative water use efficiency (WUE) of two irrigation systems in rain fed areas. Drip and furrow irrigation systems were tested on tomato, cucumber and bell pepper in this study. A permanent tunnel of 24 x 8 x 3 m was erected. Each crop was planted on 6 x 8 m under drip irrigation and on 6 x 2.70 m under furrow irrigation system. Water use efficiency was calculated as the ratio of total yield (kg) to total water consumed by the crop (m3). Each crop consumed less water under drip irrigation as compared to furrow irrigation system. Amomg crops, cucumber comsumed the least amount of water irrespective of irrigation systems. Average water use efficiency increased by 250% for tomato, 274% for cucumber and 245% for bell pepper under drip irrigation system as compared to furrow system. On the contrary, the average fruit yield increased only by 2.05% for tomato, 3.32% for cucumber and 2.35% for bell pepper in furrow irrigation over  drip irrigation. This suggested that drip irrigation has a greater scope for production of off-season vegetables especially in water scarce areas of Pakistan. DOI: http://dx.doi.org/10.3329/sja.v12i1.21113 SAARC J. Agri., 12(1): 62-71 (2014)


2013 ◽  
Vol 39 (10) ◽  
pp. 1864 ◽  
Author(s):  
Li-Xia WANG ◽  
Yuan-Quan CHEN ◽  
Chao LI ◽  
Jiang-Tao SHI ◽  
Zhi-Qiang TAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document