scholarly journals Comparative water use efficiency of drip and furrow irrigation systems for off-season vegetables under plastic tunnel

2014 ◽  
Vol 12 (1) ◽  
pp. 62-71
Author(s):  
M Musa ◽  
M Iqbal ◽  
M Tariq ◽  
FH Sahi ◽  
NM Cheema ◽  
...  

The experiment was conducted under plastic tunnel at Groundnut Research Station, Attock, Pakistan during 2006-2007 to 2008-2009 to determine water consumption by three off-season vegetables irrigated through drip and furrow systems, and to evaluate the comparative water use efficiency (WUE) of two irrigation systems in rain fed areas. Drip and furrow irrigation systems were tested on tomato, cucumber and bell pepper in this study. A permanent tunnel of 24 x 8 x 3 m was erected. Each crop was planted on 6 x 8 m under drip irrigation and on 6 x 2.70 m under furrow irrigation system. Water use efficiency was calculated as the ratio of total yield (kg) to total water consumed by the crop (m3). Each crop consumed less water under drip irrigation as compared to furrow irrigation system. Amomg crops, cucumber comsumed the least amount of water irrespective of irrigation systems. Average water use efficiency increased by 250% for tomato, 274% for cucumber and 245% for bell pepper under drip irrigation system as compared to furrow system. On the contrary, the average fruit yield increased only by 2.05% for tomato, 3.32% for cucumber and 2.35% for bell pepper in furrow irrigation over  drip irrigation. This suggested that drip irrigation has a greater scope for production of off-season vegetables especially in water scarce areas of Pakistan. DOI: http://dx.doi.org/10.3329/sja.v12i1.21113 SAARC J. Agri., 12(1): 62-71 (2014)

Agriculture ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 187 ◽  
Author(s):  
Eros Borsato ◽  
Marco Martello ◽  
Francesco Marinello ◽  
Lucia Bortolini

Water scarcity is worsened by climate change. Water savings can be reached by improving irrigation efficiency both on farm and on water supply. To do that, the choice of the best irrigation technology is not always straightforward, because farmers need to renew and implement farm infrastructures for irrigation. This study compares three irrigation systems, one drip irrigation and two sprinkler (center pivot and hose-reel) systems, on environmental, economic, and energetic performance under irrigated and non-irrigated maize cropping. The study combines impact and efficiency indicators, addressing a sustainability analysis for the irrigation practice under the three different irrigation systems. The sustainability for the irrigation systems was assessed using water-related indicators (water use efficiency, irrigation water use efficiency, and water footprint), biomass (crop growth rate, relative growth rate, harvest index, and yield response factor), and energy indicators (energy footprint, performance, and energy cost footprint) for the environmental aspect; and the economic-based indicators (water productivity and economic water footprint) for the economic aspect. Main results address the center pivot system as the best solution for irrigation practice since it demonstrated higher economic and environmental performance. Moreover, maize under the pivot system allowed a higher biomass production, economic benefits, and water use efficiency.


2004 ◽  
Vol 44 (2) ◽  
pp. 131 ◽  
Author(s):  
C. J. Linehan ◽  
D. P. Armstrong ◽  
P. T. Doyle ◽  
F. Johnson

Water use efficiency (WUE) in irrigated dairy systems has been defined, in this paper, as the amount of milk (kg milk fat plus protein) produced from pasture per megalitre of water (irrigation plus effective rainfall). A�farm survey was conducted for the 1997–98 and 1998–99 seasons in the Goulburn Irrigation System (GIS) and Murray Irrigation System (MIS) when the irrigation water allocated to irrigators in the GIS was low (100–120% of water right compared with the MIS which was 130 and 200% of water right). These data were analysed in conjunction with information collected on the same farms in the 1994–95 and 1995–96 seasons when the irrigation water allocated to irrigators in both systems was above 150% of water right (Armstrong et al. 1998, 2000). The aim of the survey was to determine if the management decisions made by dairy farmers in seasons of low irrigation water allocations had an impact on WUE.Milk production averaged across the 2 irrigation systems increased significantly over the 5-year period (57 540–75 040 kg milk fat + protein per farm). Over the same period the amount of irrigation water applied (GIS�7.6 ML/ha, MIS 9.2 ML/ha) and the milking area (GIS 72 ha, MIS 73 ha) remained constant. The amount of concentrates fed per cow (GIS 650–1100 kg DM, MIS 480–860 kg DM) and per farm (GIS 119–228 t DM, MIS�72–157 t DM) increased, but pasture consumption (GIS 8.9–9.5 t DM/ha, MIS 9.1–9.7 t DM/ha) did not increase significantly over the survey period. Therefore, the increase in milk production appeared to come primarily from an increase in supplementary feeding rather than an increase in pasture consumption, resulting in no significant change in WUE in either system (GIS 66 kg milk fat + protein/ML, MIS 61 kg milk fat + protein/ML).The survey results indicate that despite varying water allocations in the 2 major irrigation systems in northern Victoria, milk production on farms in both systems increased while changes in WUE could not be detected by the methods used. This suggests tactical options to increase WUE in response to short-term changes in water allocation were either difficult to implement or not a priority in a business sense.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 988B-988
Author(s):  
Lincoln Zotarelli ◽  
Johannes Scholberg ◽  
Michael Dukes ◽  
Hannah Snyder ◽  
Eric Simonne ◽  
...  

On sandy soils, potential N contamination of groundwater resources associated with intensively managed vegetables may hamper the sustainability of these systems. The objective of this study was to evaluate the interaction between irrigation system design/scheduling and N fertilization rates on zucchini production and potential N leaching. Zucchini was planted during Fall 2005 using three N fertilizer rates (73, 145, 217 kg/ha) and four different irrigation approaches. Irrigation scheduling included surface-applied drip irrigation and fertigation: SUR1 (141 mm applied) and SUR2 (266 mm) using irrigation control system (QIC) that allowed time-based irrigation (up to five events per day) and a threshold setting of 13% and 15% volumetric water content (VWC), respectively; Subsurface drip irrigation (SDI) using a QIC setting of 10% VWC (116 mm) combined with surface applied fertigation; and a control treatment with irrigation applied once daily (424 mm). Leacheate volumes were measured by drainage lysimeters. Nitrate leaching increased with irrigation rate and N rate and measured values ranged from 4 to 42 kg N/ha. Use of SDI greatly reduced nitrate leaching compared to other treatments. SDI and SUR1 treatments had no effect on yields (29 Mg/ha). However, SDI had a 15% and 479% higher water use efficiency (WUE) compared to SUR1 and the fixed irrigation duration treatment. Application of N in excess of intermediate N-rate (standard recommendation) did not increase yield but yield was reduced at the lowest N-rate. It is concluded that combining sensor-based SDI with surface applied fertigation resulted similar or higher yields while it reduced both water use and potential N leaching because of improved nutrient retention in the active root zone.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Ahmed Raza ◽  
Imtiaz A. Warraich ◽  
Muhammad A. Nawaz ◽  
Muhammad Asim ◽  
Abdul Aziz ◽  
...  

In Pakistan, orchards are irrigated using flood irrigation system that is considered sub-economical regarding water use efficiency. Considering the importance of natural water resources, there was a need to devise the method of applying irrigation water that would save water consumption, environmentally friendly and easily adopted by the growers. Thus, a research trial was conducted at Citrus Research Institute, Sargodha, Pakistan on 0.41 ha area of Kinnow mandarin. The total area was divided into two parts, half of the area was used for furrow irrigation system and the remaining half was used for flood irrigation system. Tensiometers were installed in the soil in furrow and flood irrigation system to assess the moisture condition in the soil. Irrigations were applied when tensiometer readings reached 40 centibars. The quantity of water used for irrigation was measured with a flume meter and then percentage of water saving was calculated. The study revealed that furrow irrigation system significantly improved the number of fruits per tree (1153), fruit yield (179.89 kg per plant) and juice percentage (48.38%) compared with flood irrigation system where the number of fruits per tree were711, fruit yield was 110.61 kg per plant and juice percentage was 46.31%. However, TSS/acidity ratio, and peel and rag percentage were not affected by the different irrigation systems. In furrow irrigation system 24 irrigations were applied per year with average water saving of 46.14% and water use efficiency (WUE) was 4.58 kg m-3 whereas in flood irrigation system average numbers of irrigations were 15 per year and WUE was 2.34 kg m-3only. Therefore, furrow irrigation system is recommended for the citrus growers to improve the water use efficiency, yield and fruit quality of Kinnow mandarin.


Crop Science ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 2806-2819 ◽  
Author(s):  
Baoyuan Zhou ◽  
Di Ma ◽  
Xuefang Sun ◽  
Zaisong Ding ◽  
Congfeng Li ◽  
...  

2003 ◽  
Vol 60 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Fátima Conceição Rezende ◽  
José Antonio Frizzone ◽  
Ricardo Ferraz de Oliveira ◽  
Anderson Soares Pereira

Greenhouse production of vegetables is widely used throughout the world. Elevated carbon dioxide (CO2) concentrations in these closed environments can increase net photosynthesis and yield. The objective of this study was to determine the effects of atmospheric CO2 enrichment and water supply on the growth of potted bell pepper (Capsicum annuum L.) plants, cultivated under controlled environmental conditions. CO2 was applied daily, and its distribution was monitored above plant rows through micro pipes located at 3.0 m height. A drip irrigation system with one dripper per plant was used to irrigate the plants. Different volumes of irrigation water, representing fractions of the water volume (Vet) consumed by pot plants growing under no water stress conditions (0.5Vet, 0.65Vet, 1.0Vet, and 1.35Vet) with four replications, were evaluated under four different CO2 levels (atmospheric concentration of 367, 600, 800, and 1000 mumol mol-1). Total fresh fruit mass, average number of fruits, and water use efficiency were recorded. For the water deficit treatments, the greatest fresh fruit mass was obtained for the highest CO2 level environment. However, for treatments that received water volumes equal or greater than the evapotranspiration rate, the greatest total fresh fruit mass was observed at the 600 mumol mol-1 of CO2 environment. The yield increase due to CO2 was represented by increase in fruit weight and not in fruit number. Water use efficiency increased in relation to the amount of water applied and it was highest at 600 mumol mol-1 CO2 concentration.


Author(s):  
R. Suvitha ◽  
A. Velayutham ◽  
V. Geethalakshmi ◽  
S. Panneerselvam ◽  
P. Jeyakumar ◽  
...  

Field experiment was conducted to evaluate the performance of different automated drip irrigation on tomato crop under sandy clay loam soil in Tamil Nadu Agricultural University during kharif 2019 and kharif 2020. Five treatments comprising 4 different automated drip irrigation systems are time based drip irrigation, volume based drip irrigation, soil moisture sensor based irrigation, switching tensiometer based irrigation and one is conventional method of irrigation were tested. The results revealed that tensiometer based drip irrigation recorded higher fruit yield of 95.11 and 96.21 t ha-1 and water use efficiency of 21.10 and 25.42 t ha-mm-1 resulting in increment over conventional method of irrigation. However, the above treatment was followed by soil moisture sensor based drip irrigation in tomato. Tensiometer based drip irrigation helps to save the water up to 54.91 and 60.55 % compared to conventional method of irrigation during kharif 2019 and 2020.


Sign in / Sign up

Export Citation Format

Share Document