Long-Term Crop Rotation Effects on Production, Grain Quality, Profitability, and Risk in the Northern Great Plains

2017 ◽  
Vol 109 (3) ◽  
pp. 957-967 ◽  
Author(s):  
Elwin G. Smith ◽  
Robert P. Zentner ◽  
Con A. Campbell ◽  
Reynald Lemke ◽  
Kelsey Brandt
Ecology ◽  
1999 ◽  
Vol 80 (7) ◽  
pp. 2397-2407 ◽  
Author(s):  
Janice M. Christian ◽  
Scott D. Wilson

1995 ◽  
Vol 48 (5) ◽  
pp. 470 ◽  
Author(s):  
A. B. Frank ◽  
D. L. Tanaka ◽  
L. Hofmann ◽  
R. F. Follett

2004 ◽  
Vol 56 (2-3) ◽  
pp. 229-246 ◽  
Author(s):  
Alwynne B. Beaudoin

Abstract The Northern Great Plains region is especially sensitive to drought and is likely to be even more drought-prone under projected global warming. Drought has been invoked as an explanatory factor for changes seen in postglacial paleoenvironmental records. These proxy records may extend drought history derived from instrumental data. Moreover, in the last decade, some paleoenvironmental studies have been expressly undertaken for the examination of long-term drought history. Nevertheless, few such studies explicitly define drought. This makes it difficult to compare results or to understand what the results mean in terms of the operational drought definitions that are used in resource management. Operational drought is defined as usually short-term; longer sustained dry intervals reflect a shift to aridity. Therefore, high resolution paleoenvironmental proxies (annual or subdecadal) are best for the investigation of drought history. Such proxies include tree rings and some lake records. However, most lake-based records are sampled at lower resolution (decadal or subcentury) and are therefore providing aridity signals.


2021 ◽  
Vol 5 ◽  
Author(s):  
Tindall Ouverson ◽  
Jed Eberly ◽  
Tim Seipel ◽  
Fabian D. Menalled ◽  
Suzanne L. Ishaq

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a 5-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.


2021 ◽  
pp. 1-22
Author(s):  
Laura Larsen

Abstract Using a socioecological metabolism approach to analyze data from the Census of Agriculture, this article examines the underlying soil fertility of two case study areas in the Canadian province of Saskatchewan through the calculation of soil nitrogen balances. The Rural Municipalities of Wise Creek and Livingston are 300 miles apart and therefore have different topography, soil types, and rainfall levels, even though both are within the northern Great Plains. Over 85 years, from first settlement in the 1910s until the beginning of the twenty-first century, Wise Creek agriculture focused increasingly on livestock production while in Livingston farmers began to grow a greater variety of crops, most notably incorporating canola into rotations. Despite the differences between the two case studies, the pattern of soil nitrogen losses was remarkably similar, with biomass yields declining along with soil nitrogen. The addition of chemical nitrogen fertilizers since the 1960s did not produce yields matching historic highs, nor did a renewed focus on livestock. Wise Creek and Livingston showed two different responses to declining yields, but neither one ultimately provided a long-term solution to the problem of soil nutrient depletion and consequent productivity declines.


2011 ◽  
Vol 103 (4) ◽  
pp. 1292-1298 ◽  
Author(s):  
Brett L. Allen ◽  
Joseph L. Pikul ◽  
Jed T. Waddell ◽  
Verlan L. Cochran

1990 ◽  
Vol 122 (3) ◽  
pp. 579-581 ◽  
Author(s):  
R.W. Kieckhefer ◽  
N.C. Elliott

Coccinellids are a conspicuous group of aphidophagous predators in maize, Zea mays L., in the Northern Great Plains of the United States. Numerous studies have been conducted on the ecology of coccinellids in maize in North America (Ewert and Chiang 1966a, 1966b; Smith 1971; Foott 1973; Wright and Laing 1980; Corderre and Tourneur 1986; Corderre et al. 1987). However, there have been few long-term surveys of coccinellids in maize. Foott (1973) reported on the abundance of coccinellid species inhabiting maize in eastern Canada over a 4-year period; no surveys of this type have been reported for the Northern Great Plains. We sampled coccinellids in maize fields at three sites in eastern South Dakota for 13 consecutive years to determine the species inhabiting the crop and levels of variation in their abundances among sites and years.


Sign in / Sign up

Export Citation Format

Share Document