scholarly journals Temporal Soil Bacterial Community Responses to Cropping Systems and Crop Identity in Dryland Agroecosystems of the Northern Great Plains

2021 ◽  
Vol 5 ◽  
Author(s):  
Tindall Ouverson ◽  
Jed Eberly ◽  
Tim Seipel ◽  
Fabian D. Menalled ◽  
Suzanne L. Ishaq

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a 5-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Jay D. Jabro ◽  
Brett L. Allen ◽  
Tatyana Rand ◽  
Sadikshya R. Dangi ◽  
Joshua W. Campbell

Compacted soils affect global crop productivity and environmental quality. A field study was conducted from 2014 to 2020 in the northern Great Plains, USA, to evaluate the effect of various rooting systems on soil compaction in 2 yr rotations of camelina (Camelina sativa L.), carinata (Brassica carinata A.) and a cover crop mix planted in place of fallow with durum (Triticum durum D.). The study was designed as a randomized complete block with three replications in a no-tillage system. The soil was classified as Dooley sandy loam (fine-loamy, mixed, superactive, frigid Typic Argiustolls) derived from glacial till parent material. Three measurements of soil penetration resistance (PR) were taken with a penetrometer to a depth of 0–30 cm within each plot. Soil moisture contents were determined using a TDR sensor at the time of PR measurements. Both measurements were monitored prior to planting in spring and after harvest. Initial PR results from spring 2014 showed that all plots had an average of 2.244 MPa between the 8–20 cm depth, due to a history of tillage and wheel traffic caused by various field activities. Covariance analysis indicated that soil PR was not significantly affected by crop type and moisture content. After one cycle of the 2 yr rotation, the 2016 measurements indicated that the compacted layer existed at the same initial depths. However, after two and three cycles, soil PR values were reduced to 1.480, 1.812, 1.775, 1.645 MPa in spring 2018 and 1.568, 1.581, 1.476, 1.458 MPa in 2020 under camelina, carinata, cover crop mix, and durum treatments, respectively. These findings indicate that previous cover crop roots could effectively improve soil compaction by penetrating the compacted layer, decompose over time and form voids and root channels. Although these results are novel and significant, further research is needed on different soils and under cover crops with different root systems to support our findings prior to making any conclusion.


2007 ◽  
Vol 99 (4) ◽  
pp. 904-911 ◽  
Author(s):  
D. L. Tanaka ◽  
J. M. Krupinsky ◽  
S. D. Merrill ◽  
M. A. Liebig ◽  
J. D. Hanson

2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2005 ◽  
Vol 137 (4) ◽  
pp. 497-500 ◽  
Author(s):  
Tuilo B. Macedo ◽  
Paula A. Macedo ◽  
Robert K.D. Peterson ◽  
David K. Weaver ◽  
Wendell L. Morrill

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is an insect pest in dryland wheat cropping systems in the southern Canadian Prairies and the northern Great Plains of the United States (Morrill 1997). Yield losses caused by C. cinctus are due to reduced head weight (Holmes 1977; Morrill et al. 1992) and lodging, which decreases harvest efficiency. Estimates of yield losses in Montana alone are about US$25 million per year.


2006 ◽  
Vol 21 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Eric A. DeVuyst ◽  
Thomas Foissey ◽  
George O. Kegode

AbstractCurrent production practices in the Red River Valley of North Dakota and Minnesota involve use of extensive tillage and/or herbicides to control weeds. Given the erosion potential, environmental concerns associated with herbicides, and herbicide-resistant weeds, alternative cropping systems that mitigate these problems need to be assessed economically. Furthermore, the role that government commodity programs play in the adoption of more ecologically friendly cropping systems needs to be determined. We evaluated 8 years of yield data (1994–2001) from field plots near Fargo, North Dakota, to compare the economics of two alternative cropping systems, reduced-input (RI) and no-till (NT), to a conventional tillage (CT) cropping system. The RI system relies on a more diverse rotation of soybean (SB), spring wheat (SW), sweet clover (SC) and rye, and uses fewer herbicide and fertilizer inputs than CT or NT. Both NT and CT systems rotate SB and SW. We found that CT returns averaged over $47 ha−1more than NT during the study period. Because SC yield data were not available, the economic competitiveness of RI was calculated using break-even yields and returns for SC. Historical SC yields in Cass County, North Dakota were not statistically different from the break-even yields. However, when government program payments were considered, break-even returns for SC increased by about $15 and $18 ha−1and break-even yields by 0.44 and 0.52 MT ha−1for RI to compare with NT and CT, respectively. These results indicate that CT management offers greater economic return than either RI or NT and that government program payments impede adoption of more environmentally friendly cropping systems in the northern Great Plains.


Author(s):  
Tiago S. Telles ◽  
Ana J. Righetto ◽  
Marco A. P. Lourenço ◽  
Graziela M. C. Barbosa

ABSTRACT The no-tillage system participatory quality index aims to evaluate the quality and efficiency of soil management under no-tillage systems and consists of a weighted sum of eight indicators: intensity of crop rotation, diversity of crop rotation, persistence of crop residues in the soil surface, frequency of soil tillage, use of agricultural terraces, evaluation of soil conservation, balance of soil fertilization and time of adoption of the no-tillage system. The aim of this study was to assess the extent to which these indicators correlate with the no-tillage system participatory quality index and to characterize the farmers who participated in the research. The data used were provided by ITAIPU Binacional for the indicators of the no-tillage system participatory quality index II. Descriptive analyses were performed, and the Pearson correlation coefficient between the index and each indicator was calculated. To assess the relationship between the indicators and the farmers’ behavior toward the indicators, principal component analysis and cluster analysis were performed. Although all correlations are significant at p-value ≤ 0.05, some correlations are weak, indicating a need for improvement of the index. The principal component analysis identified three principal components, which explained 66% of the variability of the data, and the cluster analysis separated the 121 farmers into five groups. It was verified that the no-tillage system participatory quality index II has some limitations and should therefore be reevaluated to increase its efficiency as an indicator of the quality of the no-tillage system.


2017 ◽  
Vol 109 (3) ◽  
pp. 957-967 ◽  
Author(s):  
Elwin G. Smith ◽  
Robert P. Zentner ◽  
Con A. Campbell ◽  
Reynald Lemke ◽  
Kelsey Brandt

2007 ◽  
Vol 99 (4) ◽  
pp. 904-911 ◽  
Author(s):  
D. L. Tanaka ◽  
J. M. Krupinsky ◽  
S. D. Merrill ◽  
M. A. Liebig ◽  
J. D. Hanson

Soil Science ◽  
2014 ◽  
Vol 179 (1) ◽  
pp. 11-20 ◽  
Author(s):  
The Can Caesar-TonThat ◽  
William B. Stevens ◽  
Upendra M. Sainju ◽  
Anthony J. Caesar ◽  
Mark West ◽  
...  

2020 ◽  
Vol 87 ◽  
Author(s):  
Djavan Pinheiro Santos ◽  
Robélio Leandro Marchão ◽  
Ronny Sobreira Barbosa ◽  
Juvenal Pereira da Silva Junior ◽  
Everaldo Moreira da Silva ◽  
...  

ABSTRACT: The soil macrofauna is fundamental for the maintenance of soil quality. The aim of this study was to characterize the soil macrofauna under different species of cover crops, including monoculture or intercropping associated to two types of soil management in the southwest region of Piauí state. The study was carried out in an Oxisol (Latossolo Amarelo, according to Brazilian Soil Classification System) in the municipality of Bom Jesus, Piauí, distributed in 30 m2 plots. Testing and evaluation of the soil macrofauna were conducted in a 9 × 2 strip factorial design, with combinations between cover crops/consortia and soil management (with or without tillage), with four replications. Soil monoliths (0.25 × 0.25 m) were randomly sampled in each plot for macrofauna at 0‒0.1, 0.1‒0.2, and 0.2‒0.3 m depth, including surface litter. After identification and counting of soil organims, the relative density of each taxon in each depth was determined. The total abundance of soil macrofauna quantified under cover crops in the conventional and no-tillage system was 2,408 ind. m-2, distributed in 6 classes, 16 orders, and 31 families. The results of multivariate analysis show that grass species in sole cropping systems and no-tillage presents higher macrofauna density, in particular the taxonomic group Isoptera. No-tillage also provided higher richness of families, where Coleoptera adult were the second more abundant group in no-tillage and Hemiptera in conventional tillage.


Sign in / Sign up

Export Citation Format

Share Document