Effect of Previous Rotation on Plant Parasitic Nematode Population in Peanut and Crop Yield

cftm ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. cftm2016.12.0086 ◽  
Author(s):  
David L. Jordan ◽  
Tommy Corbett ◽  
Clyde Bogle ◽  
Barbara Shew ◽  
Rick Brandenburg ◽  
...  
Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 471-475 ◽  
Author(s):  
Enrique E. Pérez ◽  
Edwin E. Lewis

A 2-year experiment was conducted to test suppression of plant-parasitic nematodes on English boxwood using entomopathogenic nematodes and 3.5% thyme oil formulated as Promax. Treatments were Steinernema riobrave formulated as BioVector and S. feltiae formulated as Nemasys, both applied at a rate of 2.5 billion infective juveniles/ha, thyme oil at rate of 9.3 liters/ha, and nontreated control. In the 2001 season, treatment with S. feltiae reduced (P ≤ 0.05) the population growth of Tylenchorhynchus sp. 7 days after treatment and Hoplolaimus sp. 30 and 60 days after treatment. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode species at all sampling dates, with the exception of Mesocriconema sp. 30 days after treatment and Tylenchorhynchus sp. and Rotylenchus buxophilus 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode genera at all sampling dates except Tylenchorhynchus sp. and R. buxophilus 60 days after treatment. In the 2002 season, treatment with S. feltiae had no effect on nematode population growth. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of R. buxophilus 7 days after treatment, and all plant-parasitic nematodes 30 and 60 days after treatment except Hoplolaimus sp. 30 days after treatment and Mesocriconema sp. 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth at all sampling dates of plant-parasitic nematodes except Mesocriconema sp. 60 days after treatment.


Author(s):  
Anil Baniya ◽  
Soumi Joseph ◽  
Larry Duncan ◽  
William Crow ◽  
Tesfamariam Mengistu

AbstractSex determination is a key developmental event in all organisms. The pathway that regulates sexual fate has been well characterized at the molecular level in the model free-living nematode Caenorhabditis elegans. This study aims to gain a preliminary understanding of sex-determining pathways in a plant-parasitic nematode Meloidogyne incognita, and the extent to which the roles of the sex determination genes are conserved in a hermaphrodite species, C. elegans, and plant-parasitic nematode species, M. incognita. In this study, we targeted two sex-determining orthologues, sdc-1 and tra-1 from M. incognita using RNA interference (RNAi). RNAi was performed by soaking second-stage juveniles of M. incognita in a solution containing dsRNA of either Mi-tra-1or Mi-sdc-1 or both. To determine the effect of RNAi of the target genes, the juveniles treated with the dsRNA were inoculated onto a susceptible cultivar of cowpea grown in a nutrient pouch at 28 °C for 5 weeks. The development of the nematodes was analyzed at different time points during the growth period and compared to untreated controls. Our results showed that neither Mi-sdc-1 nor Mi-tra-1 have a significant role in regulating sexual fate in M. incognita. However, the silencing of Mi-sdc-1 significantly delayed maturity to adult females but did not affect egg production in mature females. In contrast, the downregulation of Mi-tra-1 transcript resulted in a significant reduction in egg production in both single and combinatorial RNAi-treated nematodes. Our results indicate that M. incognita may have adopted a divergent function for Mi-sdc-1 and Mi-tra-1distinct from Caenorhabditis spp. However, Mi-tra-1 might have an essential role in female fecundity in M. incognita and is a promising dsRNA target for root-knot nematode (RKN) management using host-delivered RNAi.


2011 ◽  
Vol 47 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Perrine Tabarant ◽  
Cécile Villenave ◽  
Jean-Michel Risède ◽  
Jean Roger-Estrade ◽  
Marc Dorel

Sign in / Sign up

Export Citation Format

Share Document