Carbon‐13 Nuclear Magnetic Resonance Spectra of Soil Water‐Soluble Organic Carbon

1992 ◽  
Vol 21 (4) ◽  
pp. 537-539 ◽  
Author(s):  
J.M. Novak ◽  
P.M. Bertsch ◽  
G.L. Mills
2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984997 ◽  
Author(s):  
Marie-Cecile G. Chalbot ◽  
Ilias G. Kavouras

The water soluble organic carbon of the prevalent atmospheric aerosol sources (traffic exhausts, paved road dust, agricultural soil, native soil, wood combustion, epicuticular waxes from pine and broad-leaved trees, and pollen) has been characterized using 1H (1-dimensional), 1H-1H-correlation spectroscopy and 1H-13C-heteronuclear single quantum correlation 2-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Traffic exhaust particles were mainly constituted of primary alcohols, carbohydrates, functionalized olefins, C3 and C4 oxy- and hydroxyl-carboxylic acids, and short-chain alkanes. Road dust was a mixture of soil particles and traffic components. Agricultural, natural, road dust, and traffic particles contained broad signals that were attributed to poly-carboxylic compounds typically found in humic compounds and humic-like substances. Traces of traffic particles (ie, peaks in the 7.3-7.5 ppm [phthalic acid derivatives] and signals found in the 0.5-3 ppm originating from functionalized carboxylic acids) were also found in natural soil dust. Long-chain (>C3) fatty acids and amino acids were found in road dust, natural soil, pine trees waxes, pollen, and woodburning. The aromatic region mainly constituted of lignin derivatives and cellulose/hemicellulose pyrolysis products (signals in 2D-NMR) in woodburning. Primary biogenic and woodburning particles were uniquely clustered as compared to traffic exhausts, road, agricultural, and natural dust based on the relative ratio of hydro-oxygenated functional groups (H-C-O and H-C-C=O) to the sum of aliphatics. Overall, source-specific NMR spectrometric fingerprints, functional composition profiles, and several organic compounds were identified allowing for the reconciliation of ambient organic aerosol sources including the degree of atmospheric aging.


Author(s):  
Marie-Cecile Chalbot ◽  
Salma Siddiqui ◽  
Ilias G. Kavouras

Particulate matter is associated with increased morbidity and mortality; its effects depend on particle size and chemical content. It is important to understand the composition and resultant toxicological profile of particulate organic compounds, the largest and most complex fraction of particulate matter. The objective of the study was to delineate the nuclear magnetic resonance (NMR) spectral fingerprint of the biologically relevant water-soluble organic carbon (WSOC) fraction of size fractionated urban aerosol. A combination of one and two-dimensional NMR spectroscopy methods was used. The size distribution of particle mass, water-soluble extract, non-exchangeable organic hydrogen functional types and specific biomarkers such as levoglucosan, methane sulfonate, ammonium and saccharides indicated the contribution of fresh and aged wood burning emissions, anthropogenic and biogenic secondary aerosol for fine particles as well as primary traffic exhausts and pollen for large particles. Humic-like macromolecules in the fine particle size range included branched carbon structures containing aromatic, olefinic, keto and nitrile groups and terminal carboxylic and hydroxyl groups such as terpenoid-like polycarboxylic acids and polyols. Our study show that 2D-NMR spectroscopy can be applied to study the chemical composition of size fractionated aerosols.


Sign in / Sign up

Export Citation Format

Share Document