aerosol sources
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 43)

H-INDEX

32
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 20
Author(s):  
Otakar Makeš ◽  
Jaroslav Schwarz ◽  
Petr Vodička ◽  
Guenter Engling ◽  
Vladimír Ždímal

Two intensive measurement campaigns using a compact time-of-flight aerosol mass spectrometer were carried out at the suburban site in Prague (Czech Republic) in summer (2012) and winter (2013). The aim was to determine the aerosol sources of the NR-PM1 fraction by PMF analysis of organic (OA) and inorganic aerosol mass spectra. Firstly, an analysis of the OA mass spectra was performed. Hydrocarbon-like OA (HOA), biomass burning OA (BBOA), and two types of oxygenated OA (OOA1) and (OOA2) were identified in summer. In winter, HOA, BBOA, long-range oxygenated OA (LROOA), and local oxygenated OA (LOOA) were determined. The identified HOA and BBOA factors were then used as additional input for the subsequent ME-2 analysis of the combined organic and inorganic spectra. This analysis resulted in six factors in both seasons. All of the previously reported organic factors were reidentified and expanded with the inorganic part of the spectra in both seasons. Two predominantly inorganic factors ammonium sulphate (AMOS) and ammonium nitrate (AMON) were newly identified in both seasons. Despite very similar organic parts of the mass profiles, the daily cycles of HOA and LOOA differed significantly in winter. It appears that the addition of the inorganic part of the mass profile, in some cases, reduces the ability of the model to identify physically meaningful factors.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1682
Author(s):  
Mostafa Yuness Abdelfatah Mostafa ◽  
Hyam Nazmy Bader Khalaf ◽  
Michael V. Zhukovsky

A correlation between the mass concentration of particulate matter (PM) and the occurrence of health-related problems or diseases has been confirmed by several studies. However, little is known about indoor PM concentrations, their associated risks or their impact on health. In this work, the PM1, PM2.5 and PM10 produced by different indoor aerosol sources (candles, cooking, electronic cigarettes, tobacco cigarettes, mosquito coils and incense) are studied. The purpose is to quantify the emission characteristics of different indoor particle sources. The mass concentration, the numerical concentration, and the size distribution of PM from various sources were determined in an examination room 65 m3 in volume. Sub-micrometer particles and approximations of PM1, PM2.5 and PM10 concentrations were measured simultaneously using a diffusion aerosol spectrometer (DAS). The ultrafine particle concentration for the studied indoor aerosol sources was approximately 7 × 104 particles/cm3 (incense, mosquito coils and electronic cigarettes), 1.2 × 105 particles/cm3 for candles and cooking and 2.7 × 105 particles/cm3 for tobacco cigarettes. The results indicate that electronic cigarettes can raise indoor PM2.5 levels more than 100 times. PM1 concentrations can be nearly 55 and 30 times higher than the background level during electronic cigarette usage and tobacco cigarette burning, respectively. It is necessary to study the evaluation of indoor PM, assess the toxic potential of internal molecules and develop and test strategies to ensure the improvement of indoor air quality.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1553
Author(s):  
Jie Chen ◽  
Wenyue Zhu ◽  
Qiang Liu ◽  
Xianmei Qian ◽  
Xuebin Li ◽  
...  

A two-month sampling campaign was carried out from 1 November to 30 December 2019, to investigate the light absorption of aerosols at coastal sites in Qingdao. The average values and standard deviations of the absorption coefficient (OAC) at λ = 1064 nm during the measurement period were 18.52 ± 13.31 Mm−1. Combined with the backward trajectory model, the aerosol absorption coefficient and gas pollution concentration of six possible air mass trajectories were obtained and calculated. The maximum absorption coefficient of local air masses was approximately 20.4 Mm−1 and anthropogenic pollution originated from mainly local sources in the Jiaozhou area. In our measurements at this site, the results also showed that there was a positive correlation between relative humidity (RH) and aerosol absorption. Without considering other factors, the size of aerosol particles grew with the increasing of RH, which changed the nonlinear relationship between the size and the absorption cross section of aerosol particles subsequently. In addition, the correlations between gas pollutants and OAC were calculated. The atmospheric environment is complex in sea–land intersection areas, especially in coastal cities. Analysis of various aerosol sources, meteorological conditions, and gas precursors enhances the study of aerosol optical absorption.


2021 ◽  
Author(s):  
N. Nowak ◽  
K. Scheiber ◽  
C. Stieler ◽  
M. T. Heller ◽  
J. Pfeil ◽  
...  

Abstract Crankcase aerosol contributes to the particulate matter (PM) emissions of combustion engines equipped with an open crankcase ventilation system. In case of closed crankcase ventilation, the aerosol forms deposits that diminish engine efficiency, performance, and reliability. Such issues are best avoided by highly efficient filters combined with in-engine reduction strategies based on a quantitative understanding of aerosol sources and formation mechanisms in a crankcase environment. This paper reports key findings from a study of aerosol spectra in the range of 0.01 μm to 10 μm obtained from a 1.3-L single-cylinder engine under well-defined conditions. Supermicron particles were formed mainly by cooling jet break-up when the piston was positioned in TDC, while at BDC aerosol generation decreased by about 90 % because the oil jet was short and thus stable. Motoring the engine yielded an additional peak around 0.7 μm. It is associated with oil atomization at the piston rings and increased strongly with cylinder peak pressure. No significant contribution of the bearings could be identified at peak pressures below 116 bar. Engine speed had only a minor effect on aerosol properties. Operating the engine in fired mode increased the submicron aerosol concentration substantially, presumably because high(er) peak pressures boost aerosol generation at the piston rings, and because additional particles may have formed from recondensing oil vapor generated at hotspots. Soot or ash aerosols could not be identified in the crankcase aerosol, because they may have been integrated into the bulk oil.


2021 ◽  
pp. 1-62
Author(s):  
Aiden Jönsson ◽  
Frida A.-M. Bender

AbstractDespite the unequal partitioning of land and aerosol sources between the hemispheres, Earth’s albedo is observed to be persistently symmetric about the equator. This symmetry is determined by the compensation of clouds to the clear-sky albedo. Here, the variability of this inter-hemispheric albedo symmetry is explored by decomposing observed radiative fluxes in the CERES EBAF satellite data record into components reflected by the atmosphere, clouds, and the surface. We find that the degree of inter-hemispheric albedo symmetry has not changed significantly throughout the observational record. The variability of the inter-hemispheric difference in reflected solar radiation (asymmetry) is strongly determined by tropical and subtropical cloud cover, particularly those related to non-neutral phases of the El Niño-Southern Oscillation (ENSO). As the ENSO is the most significant source of interannual variability in reflected radiation on a global scale, this underscores the inter-hemispheric albedo symmetry as a robust feature of Earth’s current annual mean climate. Comparing this feature in observations with simulations from coupled models reveals that the degree of modeled albedo symmetry is mostly dependent on biases in reflected radiation in the midlatitudes, and that models that overestimate its variability the most have larger biases in reflected radiation in the tropics. The degree of model albedo symmetry is improved when driven with historical sea surface temperatures, indicating that the degree of symmetry in Earth’s albedo is dependent on the representation of cloud responses to coupled ocean-atmosphere processes.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1228
Author(s):  
Rahul Sheoran ◽  
Umesh Chandra Dumka ◽  
Dimitris Kaskaoutis ◽  
Georgios Grivas ◽  
Kirpa Ram ◽  
...  

The present study analyzes data from total suspended particulate (TSP) samples collected during 3 years (2005–2008) at Nainital, central Himalayas, India and analyzed for carbonaceous aerosols (organic carbon (OC) and elemental carbon (EC)) and inorganic species, focusing on the assessment of primary and secondary organic carbon contributions (POC, SOC, respectively) and on source apportionment by positive matrix factorization (PMF). An average TSP concentration of 69.6 ± 51.8 µg m−3 was found, exhibiting a pre-monsoon (March–May) maximum (92.9 ± 48.5 µg m−3) due to dust transport and forest fires and a monsoon (June–August) minimum due to atmospheric washout, while carbonaceous aerosols and inorganic species expressed a similar seasonality. The mean OC/EC ratio (8.0 ± 3.3) and the good correlations between OC, EC, and nss-K+ suggested that biomass burning (BB) was one of the major contributing factors to aerosols in Nainital. Using the EC tracer method, along with several approaches for the determination of the (OC/EC)pri ratio, the estimated SOC component accounted for ~25% (19.3–29.7%). Furthermore, TSP source apportionment via PMF allowed for a better understanding of the aerosol sources in the Central Himalayan region. The key aerosol sources over Nainital were BB (27%), secondary sulfate (20%), secondary nitrate (9%), mineral dust (34%), and long-range transported mixed marine aerosol (10%). The potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses were also used to identify the probable regional source areas of resolved aerosol sources. The main source regions for aerosols in Nainital were the plains in northwest India and Pakistan, polluted cities like Delhi, the Thar Desert, and the Arabian Sea area. The outcomes of the present study are expected to elucidate the atmospheric chemistry, emission source origins, and transport pathways of aerosols over the central Himalayan region.


Author(s):  
J. Bichon ◽  
M. Lavancier ◽  
D. Petitprez ◽  
A. Deguine ◽  
D. Hourlier ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Huang Zheng ◽  
Shaofei Kong ◽  
Nan Chen ◽  
Zewei Fan ◽  
Ying Zhang ◽  
...  

AbstractThe result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (αff) and wood burning (αwb). A method using hourly measured potassium to calculate the αff and αwb values was developed in this study. Results showed that the optimal αff and αwb were 1.09 and 1.79 for the whole dataset. The optimal α values in the diurnal resolution were also calculated with αff and αwb varied in 1.02 –1.19 and 1.71–1.90, respectively. Using the dynamic α values, the Pearson correlation coefficient between BC and potassium from wood burning substantially improved compared to the results derived from the fixed α values. The method developed in this study is expected to provide more reasonable BC source identification results, which are helpful for air quality, climate, and human health modeling studies.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 730
Author(s):  
Daniele Contini ◽  
Ying-Hsuan Lin ◽  
Otto Hänninen ◽  
Mar Viana

Atmospheric aerosol is one of the major leading environmental risk factors for human health worldwide, potentially causing several million premature deaths per year [1,2]. [...]


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 728
Author(s):  
Magda Claeys ◽  
Willy Maenhaut

In this review, we cover selected research on secondary organic aerosol (SOA) formation from isoprene, from the beginning of research, about two decades ago, to today. The review begins with the first observations of isoprene SOA markers, i.e., 2-methyltetrols, in ambient fine aerosol and focuses on studies dealing with molecular characterization, speciation, formation mechanisms, and source apportionment. A historic account is given on how research on isoprene SOA has developed. The isoprene SOA system is rather complex, with different pathways being followed in pristine and polluted conditions. For SOA formation from isoprene, acid-catalyzed hydrolysis is necessary, and sulfuric acid enhances SOA by forming additional nonvolatile products such as organosulfates. Certain results reported in early papers have been re-interpreted in the light of recent results; for example, the formation of C5-alkene triols. Attention is given to mass spectrometric and separation techniques, which played a crucial role in molecular characterization. The unambiguous structural characterization of isoprene SOA markers has been achieved, owing to the preparation of reference compounds. Efforts have also been made to use air quality data to estimate the influence of biogenic and pollution aerosol sources. This review examines the use of an organic marker-based method and positive matrix factorization to apportion SOA from different sources, including isoprene SOA.


Sign in / Sign up

Export Citation Format

Share Document