Tissue Culture of Annual Ryegrass ✕ Tall Fescue F 1 Hybrids: Callus Establishment and Plant Regeneration 1

Crop Science ◽  
1979 ◽  
Vol 19 (4) ◽  
pp. 457-460 ◽  
Author(s):  
M. J. Kasperbauer ◽  
R. C. Buckner ◽  
L. P. Bush
Crop Science ◽  
1965 ◽  
Vol 5 (5) ◽  
pp. 395-397 ◽  
Author(s):  
R. C. Buckner ◽  
H. D. Hill ◽  
A. W. Hovin ◽  
P. B. Burrus
Keyword(s):  

Author(s):  
A.G. Scott ◽  
D.W.R. White

Tissue culture was used in an attempt to obtain a fertile perennial ryegrass x tall fescue hybrid. Regenerated hybrid plants were found to be morphologically variable and contain extensive chromosome rearrangements. Spontaneous chromosome doubling had occurred as well as chromosome elimination. though no fertile hybrid plants have been obtained to date. Keywords: somaclonal variation, Lolium perenne, Festuca arundinacea, intergeneric hybrids


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 929
Author(s):  
Carloalberto Petti

Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a “hormone-like” molecule and can trigger direct embryogenesis without callus formation.


2014 ◽  
Vol 644-650 ◽  
pp. 5407-5410
Author(s):  
Hui Fang Chi

s. The cotyledons, Internodes, leaves and stems of sweet broad pea were studied on tissue culture. Research results show that: The ability of different explants for callus formation and adventitious bud differentiation in different culture medium is different. The callus formation rate and sprouting rate of Internodes is significantly higher than other explants, which is a ideal material for tissue culture. The callus formation rate of Internodes was 100% in MS +BA1.0 mg/L+NAA 1.0 mg/L and MS+ 2, 4-D 0.5 mg/L; The bud differentiation is best at the medium of MS+ 6-BA 2 mg/L, which reached 86.7%; the rooting rate was 83.3% at the medium of MS+ NAA 3mg/L. The study provides a experimental basis for further study on the plant regeneration in the sweet broad pea.


Sign in / Sign up

Export Citation Format

Share Document