Recurrent Selection for Grain Yield in Durum Wheat

Crop Science ◽  
1995 ◽  
Vol 35 (3) ◽  
pp. 714-719 ◽  
Author(s):  
O. B. Olmedo‐Arcega ◽  
E. M. Elias ◽  
R. G. Cantrell
Crop Science ◽  
1992 ◽  
Vol 32 (5) ◽  
pp. 1184-1187 ◽  
Author(s):  
Gary J. Pomeranke ◽  
Deon D. Stuthman

2007 ◽  
Vol 10 (20) ◽  
pp. 3632-3637
Author(s):  
S. Salim Shah . ◽  
Hidayat-Ur-Rahman . ◽  
Iftikhar Hussain Kha . ◽  
Muhammad Iqbal .

1981 ◽  
Vol 61 (1) ◽  
pp. 29-36
Author(s):  
O. A. ADARA ◽  
L. W. KANNENBERG

Two cycles of S1 per se recurrent selection were conducted in four populations of corn (Zea mays L.). The primary selection criterion was a performance index: grain yield divided by percent moisture at harvest. The original (C0) source material and first cycle (C1) of selection for each population were evaluated in a favorable (1977) and an unfavorable (1978) growing season. Second cycle (C2) materials were also included in the 1978 comparisons. In 1977, C1 yielded significantly more grain than C0 in three of the four populations. In contrast, performance of C1 and C2 materials in 1978 was inferior to C0 in all populations but one. The advanced cycles of only one population showed improvement over C0 in both years. Comparisons of the 1977 data for days to silking, grain yield, and percent ear moisture at harvest suggest that rate of grain filling in C1 was higher than in C0 for all populations. The higher rates of grain filling in the advanced cycles may have caused a carbohydrate deficiency under stress (1978) so that the leaves no longer functioned normally and kernel filling was terminated prematurely. In general, the four populations showed inherent differences in their respective responses to selection, to environmental stress, and to inbreeding.


1987 ◽  
Vol 108 (2) ◽  
pp. 469-477 ◽  
Author(s):  
S. R. Waddington ◽  
M. Osmanzai ◽  
M. Yoshida ◽  
J. K. Ransom

SummaryTwo trials designed to measure progress in the yield of durum wheat cultivars released in Mexico by the Institute Nacional de Investigaciones Agrícolas over the period 1960–84 were grown in the Yaqui Valley, Sonora, Mexico, during the 1983–4 and 1984–5 cropping seasons. The trials compared grain yield, above-ground biomass, harvest index (ratio of dry grain yield to dry above-ground biomass), yield components, grain-growth rates and phenological characters for eight key cultivars and the modern advanced line, Carcomun ‘S’, when grown at a high level of agronomic inputs and management.The grain yield of durum wheat was estimated to have risen for 25 years of breeding from 3·70 to 8·40 t/ha. The estimated average annual rates of increase in grain yield for the periods 1960–71 and 1971–85 were 251 and 121 kg/ha respectively. Grain yield improvements were based on a linear increase in the number of grains/m2 over the 25-year period, the result of more grains per spikelet. An improved above-ground biomass at maturity was a feature of the two modern genotypes, Altar 84 and Carcomun ‘S’. Harvest index increased with each new cultivar up to the release of Mexicali 75 in 1975, but thereafter the higher grain yields achieved with the modern genotypes were not associated with a higher harvest index. Thousand-grain weight remained steady for the released cultivars but fell slightly for the advanced line Carcomun ‘S’. Improvements in yield were not associated with a longer cropping cycle.It is concluded that a breeding strategy combining selection for morphological characters thought to confer high yield potential, such as a more erect leaf posture and high number of grains per spikelet, with selection for grain yield per se has been successful in improving the grain yield of durum wheats adapted to north-west Mexico. Improvements have come not only in the size of the grain sink and the efficiency of assimilate partition to grain but also in the biomass produced above ground.


Sign in / Sign up

Export Citation Format

Share Document